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1 Introduction

The exponential GARCH (EGARCH) model introduced by Nelson (1991) remains one of the

most popular GARCH type models for modelling the volatility of financial time series. Its ad-

vantages over the classical ARCH model of Engle (1982) and GARCH model of Bollerslev (1986)

are manyfold. For example, the EGARCH model allows for asymmetric effects of positive and

negative innovations. Furthermore, the conditional variance is positive by construction, which

allows one to include exogenous variables in the volatility equation. And finally, stochastic

properties of the model such as stationarity are naturally comparable to linear models of the

conditional mean, while for classical GARCH models this is not the case. The popular software

package Eviews offers EGARCH as one of its main volatility models.

Despite these methodological advantages, there are some technical issues with EGARCH

due to the inherent difficulty of deriving a concise theory for estimation and inference. In

particular, the maximum likelihood estimator proposed by Nelson (1991) is particularly difficult

to analyze, due to the invertibility issue. Some recent progress has been made by Straumann

and Mikosch (2006) but only for a special case and even then the regularity conditions are

hard to interpret. Wintenberger (2012) proves consistency using continuous invertibility, and

provides sufficient conditions for this to hold, which however seem to be restrictive. Similarly,

Demos and Kyriakopoulou (2013) give sufficient conditions for asymptotic normality, which

also restrict the admissible parameter space.

As an alternative to MLE, Zaffaroni (2009) proposes a Whittle estimator and shows con-

sistency and asymptotic normality. Both MLE and Whittle require multiparameter numerical

optimization, and the convergence of optimization algorithms often depends on a judicious

choice of starting values.

Instead of using estimators that require numerical optimization, one may want to consider

estimators that are available in closed form, for example based on some moment conditions of

the model. Such closed form estimators are likely to be less efficient, but have the advantage

of being immediately available and as such could be used, for example, as starting value for

estimators that do require numerical optimization. As they are
√

n-consistent, they can also be

used as such in very large samples, considering that estimators involving numerical optimization

often require substantial computational effort to achieve convergence in those situations, which

are not rare in financial applications.

In the classical GARCH(1,1) model, Kristensen and Linton (2006) have introduced a closed

form estimator. The classical GARCH model is, in many respects, simpler than the EGARCH

model. For example, unconditional moments such as the unconditional variance do not depend

on the innovation distribution in the GARCH model, whereas they do in the EGARCH model.

In this paper, we propose an estimator of the EGARCH model which is in closed form for

a given innovation distribution in the class of generalized error distributions (GED). For the

1



parameter that describes the persistence of shocks to volatility, we propose an estimator that

is independent of the innovation distribution and also of form of the news impact function used

in the specification of the volatility process. If the particular GED distribution is unknown, we

provide two ways of estimating the parameter of this distribution, using a profiled likelihood

estimator and a moment estimator, respectively. As the estimator of the model parameters,

apart from the persistence parameter, depends on the parameter of the innovation distribution,

we say that our estimator is in almost closed form. We derive the asymptotic properties of our

moment-based estimator and illustrate its small sample performance via a simulation study.

We then

2 The EGARCH model

Consider the following exponential GARCH (EGARCH) model for the observed zero mean

process yt

yt = eht/2ξt (1)

ht = ω + g(ξt−1) + βht−1, (2)

where the following conditions are satisfied

Assumption 1. ξt is i.i.d. with density f, where E(ξt) = 0 and var(ξt) = 1, while g(·) is

a measurable function such that E[g(ξt)] = 0 and E[|g(ξt)|2] < ∞. The parameter |β| < 1.

Under these conditions the linear process ht is strongly and weakly stationary, as well as

geometrically ergodic (mixing), Nelson (1991).

This defines a semiparametric model with regard to the error density f and the news impact

curve g. We will later specialize according to very popular choices for f and g, but without

further assumptions we record below the second order properties of the series zt = log y2
t .

In the sequel, we need the following moments of ξt: C1(f) = E[log ξ2
t ], C2(f) = var(log ξ2

t ),

C3(f ; g) = E[log(ξ2
t )g(ξt)], C4(f) = var(|ξt|), C5(f) = E|ξt|, and C6(f) = cov(log(ξ2

t ), |ξt|).
Following Lütkepohl (1993, p.233) it is easy to show that zt has an ARMA(1,1) representa-

tion which implies the following result.

Proposition 1. The first two moments of zt are given by

µ = E[zt] = C1(f) +
ω

1 − β
(3)

σ2 = var(zt) =
var(g(ξt))

1 − β2
+ C2(f) (4)

γ(k) = cov[zt, zt−k] = βk−1

(
βvar(g(ξt))

1 − β2
+ C3(f ; g)

)
, k ≥ 1. (5)
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It follows that

β =
γ(k + 1)

γ(k)
=

ρ(k + 1)

ρ(k)

for all k ≥ 1, which identifies the parameter β. Here, ρ(.) denotes the autocorrelation function.

The remaining quantities ω, g, and f are not separately identifiable from this information

without further structure.

This second order structure was used in Zaffaroni (2009) to form the Whittle likelihood to

estimate a subset of the parameters of Nelson’s model. As he remarked, it contains insufficient

information to identify all parameters of Nelson’s model, which is a special case of (1) and (2)

that we turn to next.

2.1 Nelson’s Model

We now specialize to the model considered by Nelson (1991). He assumed that ξt followed a

standardized generalized error distribution, ξt ∼ GED(ν), with mean zero, variance one, and

with density function given by

f(ξ) =
ν exp {−(1/2)|ξ/λ|ν}

λ21+1/νΓ(1/ν)
, (6)

where λ =
{
2−2/νΓ(1/ν)/Γ(3/ν)

}1/2
. The GED includes the normal as a special case (ν =

2), but allows for fat tails (ν < 2) while maintaining finiteness of unconditional moments

such as the unconditional variance. This density is also called the EPD (Exponential power

distribution) and the Subbotin distribution, Subbotin (1923). For ν > 1, it is a log concave

density, although not strictly log-concave, see Wellner (2012). We shall restrict attention to ν ∈
V , where V ⊂ (1,∞) is a compact set. We now denote C1(ν) = E[log ξ2

t ], C2(ν) = var(log ξ2
t ),

C3(ν; g) = E[log(ξ2
t )g(ξt)], C4(ν) = var(|ξt|), C5(ν) = E|ξt|, and C6(ν) = cov(log(ξ2

t ), |ξt|).
These quantities can be computed numerically for any ν and in some cases have ”almost closed

form” expressions, such as C5(ν) = 21/νΓ(2/ν)/Γ(1/ν), see (A1.8) of Nelson (1991). They are

smooth functions of ν over V for some choice of V. One can see that ∂Cj/∂ν 6= 0.

Nelson (1991) also proposed a specific parametric news impact function g

g(ξt) = θξt + α(|ξt| − E|ξt|), (7)

where θ and α are unknown parameters. For this specification we have var(g(ξt)) = θ2 +

α2C4(ν).1 It is then straightforward to show that

E[ztsgn(yt−1)] = θC5(ν). (8)

1Actually, the GED specification is not needed for this result, only the symmetry of f .
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Furthermore, under the GED distribution (actually under any symmetric distribution)

C3(ν; g) = αC6(ν). (9)

We introduce one further expression. Nelson (1991, Theorem A1.2) shows that provided

ν > 1,

C7(ν; ω, β, γ, θ) = E exp(ht/2) (10)

= exp

(
ω

2(1 − β)

) ∞∏

j=1

exp(−βj−1γΓ(2/ν)λ(ν)2(1−v)/ν/Γ(1/ν))

∞∑

k=0

(2(1−v)/νλ(ν)βj−1)k
[
(γ + θ)k + (γ − θ)k

] Γ((k + 1)/ν)

2Γ(1/ν)Γ(k + 1)

< ∞.

This is obviously a very complicated nonlinear expression and it depends on all the parameters.

It is also a smooth function over the range of parameter values for which the moment exists.

We next discuss estimation of φ = (ν, ω, α, β, γ, θ) based on the expressions (3), (4), (5),

(8), (9), and (10).

3 The closed form estimator

Suppose we have a sample y1, . . . , yn and the parameters are such that the process is stationary

and ergodic. Define the sample mean and autocovariance function (for k = 0, 1, 2, . . .)

µ̂ =
1

n

n∑

t=1

zt

γ̂(k) =
1

n − k

n∑

t=k+1

(zt − µ̂)(zt−k − µ̂),

and define the autocorrelation function ρ̂(k) = γ̂(k)/γ̂(0).

Equation (5) implies that γ(j + 1) = βγ(j) and ρ(j + 1) = βρ(j), j = 1, 2, . . . . Then,

motivated by Proposition 1, we propose the following moment estimators for β

β̂ =

p∑

j=1

γ̂(j + 1)

γ̂(j)
wj =

p∑

j=1

ρ̂(j + 1)

ρ̂(j)
wj, (11)

where p ≥ 1 and wj some known weights such that
∑p

j=1 wj = 1. This is just like Kristensen

and Linton (2006). Note that β̂ is independent of the specification of g(·) and of the innovation

distribution. In practice, the median of the ratios or a trimmed mean may provide superior
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performance. Another method is based on regression. Let y = (γ̂(2), . . . , γ̂(p + 1))
⊺

, z =

(γ̂(1), . . . , γ̂(p))
⊺

, and x = (ip, γ̂), where ip is the p−vector of ones. Then let β̂ = (z
⊺

z)−1z
⊺

y or

even the slope coefficient from the intercept regression (x
⊺

x)−1x
⊺

y.

The remaining parameters depend on the error distribution parameter ν and we shall there-

fore profile this. Using (3)-(8), we obtain

ω̂(ν) = (µ̂ − C1(ν))(1 − β̂)

θ̂(ν) =
1

C5(ν)

1

n

n∑

t=1

ztsgn(yt−1)

α̂(ν) =
1

C6(ν)

{
q∑

j=1

γ̂(j)

β̂j−1
ωj − β̂

(
1

n

n∑

t=1

(zt − µ̂)2 − C2(ν)

)}
.

for q ≥ 1 and ωj some known weights such that
∑q

j=1 ωj = 1. If ν were known, e.g., when

ν = 2, this would be a complete estimation procedure.

4 Estimation of ν

We next consider how to estimate ν from the data as in Nelson (1991). There are two ap-

proaches. First, the profiled likelihood method. We can obtain recursively

ξ̂t(ν) = exp{−ĥt(ν)/2}yt (12)

where

ĥt(ν) = ω̂(ν) + θ̂(ν)ξ̂t−1(ν) + α̂(ν)(|ξ̂t−1(ν)| − C5(ν)) + β̂ĥt−1(ν) (13)

ĥ1(ν) =
ω̂(ν)

1 − β̂
= (µ̂ − C1(ν)). (14)

The profiled log likelihood is then given by

L̂(ν) =
n∑

t=1

ℓ̂t(ν)

ℓ̂t(ν) = ln(ν/λ21+1/νΓ(1/ν)) − 1

2

{
|ξ̂t(ν)/λ|ν + ĥt(ν)

}
,

which is maximized w.r.t. ν using a grid search over the compact set V. Let ν̂L denote the max-

imizer. Unfortunately, it is difficult to prove rigorously the consistency even of this estimator

of ν. The issue is due to the nonlinear recursive equations (11)-(13), which are very difficult

to analyze away from the true value, exactly the same problem as for the original EGARCH

MLE.
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Instead, we consider an alternative method based on the method of moments using the

expression (10). Specifically, find ν̂m ∈ V to solve the nonlinear equation

mn =
1

T

n∑

t=1

|yt| = C8(ν; ω̂(ν), β̂, γ̂(ν), θ̂(ν)), (15)

where C8(ν; ω, β, γ, θ) = C5(v)C7(ν; ω, β, γ, θ) and C7(ν; ω, β, γ, θ) is defined in (10). This can

also be done by a univariate grid search. In practice, one may prefer to take logarithms of both

sides to obtain expressions only involving summations, which may then be suitably truncated

to achieve whatever degree of accuracy is required. The advantage of this method is that it is

purely based on sample moments of observables and so there is no need to define a recursive

dynamic equation based on estimated parameters. The theoretical properties are much easier to

handle. Specifically, one can obtain consistency and asymptotic normality of all the parameter

estimates.2

5 Asymptotic Properties

We first discuss some properties of the estimators defined in section 3. Under Assumption 1,

zt = log y2
t is a linear process that satisfies the conditions of Theorem 7.2.2. of Brockwell and

Davies (2006) and so the sample autocorrelations are asymptotically normal at rate
√

n. The

estimator β̂ is a smooth function of the first p+1 autocorrelations and so (provided β ∈ (0, 1))

the asymptotic distribution of β̂ follows without the additional structure provided by Nelson’s

model. To repeat, the estimator β̂ is robust to both f and g, in the sense that it is consistent

for a large class of these functions, unlike the GED MLE proposed by Nelson (1991), which

certainly requires correct specification of the news impact curve and may also require at least

symmetry of the true density for the GED based MLE to be consistent.

Stengthening the moment conditions of Assumption 1 to E[|ξt|4] < ∞ and E[|g(ξt)|4] < ∞
we may apply Theorem 7.2.1 of Brockwell and Davies (2006) to obtain the root-n consistency

and asymptotic normality of the sample autocovariances used in section 3.3 This in turn

implies the root-n asymptotic normality of ω̂(ν) and α̂(ν) around some limiting value (the

argument for θ̂(ν) is similar as it only depends additionally on the sign of ξt). This is true

without the GED assumption, although the probability limit would obviously depend on the

underlying distribution f. Define η̂(ν) = (ω̂(ν), β̂, θ̂(ν), α̂(ν))⊤ for each v ∈ V, and let η(ν) =

(ω(ν), βo, θ(ν), α(ν))⊤ be defined as the probability limit of η̂(ν). Then it is straightforward to

2Nelson (1991, Theorem A1.2) shows that provided ν > 1, all moments of y exist and so the asymptotic

normality of n−1/2
∑n

t=1
|yt| − E|yt| follows under the stationarity and geometric ergodicity of y.

3The moment conditions on the innovation are quite mild and there is no restriction on the implied moments

for yt so far, unlike in Kristensen and Linton (2006).
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show (see the appendix) that for some positive definite covariance matrix Σ(ν)

δn(ν) =
√

n [η̂(ν) − η(ν)] =⇒ N(0, Σ(ν)). (16)

Furthermore, the process δn(ν) is tight in ν (it is continuously differentiable in ν).

We now assume that Nelson’s model holds in its entirety. In this case ξt and g(ξt) have all

moments existing. Furthermore,

ω(ν) = ωo + (C1(νo) − C1(ν))(1 − βo) ; θ(ν) = θo
C5(νo)

C5(ν)

α(ν) = αo
C6(νo)

C6(ν)
+

1

C6(ν)
βo{C2(νo) − C2(ν)},

where subscript o denotes true value. In this case, if ν0 is known, the result can be used to

provide standard errors and conduct inference about the remaining parameters. We next show

that one can carry out a test of leverage in the model (7) without knowledge of ν or even f (so

long as it is symmetric about zero).

Our estimator θ̂(ν), for any ν, can be used to test for a leverage effect within the Nelson

model. The reason is that in constructing the t-ratio the constant term C5(ν) is cancelled out.

That is, we may compute

t =
θ̂(ν)

se(θ̂(ν))
=

1
n

∑n
t=1 ut√

nlrvar(ut)
,

where ut = ztsgn(yt−1) and lrvar(xt) denotes the long run variance of a series xt. In fact, the

series ztsgn(yt−1) = ztsgn(ξt−1) is serially uncorrelated, so that lrvar(ut) = var(ut). By direct

calculation we have

var(ztsgn(yt−1)) = Ez2
t −E2ztsgn(yt−1) =

θ2 + α2C4(ν)

1 − β2
+C2(ν)+

(
C1(ν) +

ω

1 − β

)2

−θ2C2
5(ν).

This can be estimated by the plug in method or from the sample variance of ut itself, which in

practice is easier. Let

t̂ =

√
nu√

1
n−1

∑n
t=1(ut − u)2

, u =
1

n

n∑

t=1

ut. (17)

Then under the null hypothesis of no leverage, t̂ is asymptotically standard normal. This test

is robust to the value of v and indeed is valid for any symmetric error distribution.

Finally, we turn to the properties of the estimator of all parameters proposed in section 4.

Let φo = (ωo, βo, θo, αo, νo)
⊤ and let φ̂m = (ω̂(ν̂m), β̂, θ̂(ν̂m), α̂(ν̂m), ν̂m)⊤.

Theorem 1. Suppose that Assumption 1 holds, that Nelson’s model (6) and (7) holds, and

that β > 0. Then there exists a positive definite matrix Ωφφ such that

√
n(φ̂m − φo) =⇒ N(0, Ωφφ).
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In fact one can calculate the variance matrix Ωφφ exactly in terms of the parameters φo

(along the lines of Francq, Horvath, and Zakoian (2011)).

6 Approximating the MLE

The closed form estimators we have proposed are not fully efficient. We give a brief discussion on

how one may improve on the efficiency of the closed form estimator. The basic idea is to perform

a number of Newton-Raphson (NR) iterations using the full EGARCH likelihood function. One

may wish to proceed to the MLE, using the initial estimates as a starting point in the numerical

optimization; this may help reduce numerical problems since our preliminary estimates are

consistent, i.e., are likely to be close to the true values. Alternatively, one can perform a number

of NR-iterations which do not necessitate the use of any numerical optimization procedure. We

define the following sequence of NR-estimators,

φ̂NR
k+1 = φ̂NR

k − H−1
n (φ̂NR

k )Sn(φ̂NR
k ), k ≥ 1,

with initial value being the closed form estimator, φ̂NR
1 = φ̂m, while Sn (φ) = ∂L (φ) /∂φ,

Hn (φ) = ∂2L (φ) /∂φ∂φ⊤, and L (φ) is the EGARCH likelihood function:

L (φ) =
n∑

t=1

ℓt(φ)

ℓt(φ) = ln(ν/λ21+1/νΓ(1/ν)) − 1

2

{
|ξ̂t(φ)/λ(ν)|ν + ĥt(φ)

}

ξ̂t(φ) = exp{−ĥt(φ)/2}yt

ĥt(φ) = ω + θξ̂t−1(φ) + α(|ξ̂t−1(φ)| − C5(ν)) + βĥt−1(φ)

ĥ1(φ) =
ω

1 − β
.

Note that L (φ) is twice continuously differentiable in φ for a compact subset of R
5.

In general, the NR-estimator will satisfy

||φ̂NR
k+1 − φ̂OP|| = OP (||φ̂NR

1 − φ̂OP||2k

), (18)

where φ̂OP = arg max Qn (φ) is the actual M-estimator, c.f. Robinson (1988, Theorem 2). We

expect that a two step estimator should be fully efficient, i.e.,

√
n(φ̂NR

2 − φo) =⇒ N


0,

(
E

[
∂ℓt(φ)

∂φ

∂ℓt(φ)

∂φ⊺

]

φ=φo

)−1



under some regularity conditions.
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7 Numerical Results

7.1 A simulation study

We explore the finite sample properties of the proposed estimators through a Monte Carlo

simulation study. We generate EGARCH processes with Gaussian (i.e., ν = 2) and GED

(ν = 1.5) innovations, and the following parameters: ω = −0.3, α = 0.5, β = 0.9, and

θ = −0.1, which represent typical values for financial time series. We consider various sample

sizes n and use 1000 replications.

We first analyse the properties of alternative estimators of β: a simple mean of ratios, a

weighted mean with linearly declining weights, the median, and the OLS without intercept

regression estimator. All four estimators depend on the number of terms p included, which we

increase in steps of five from 5 to 50. For higher values of p, the estimates of the ACF of zt

become too noisy and all estimates of β suffer from high variability. Results are reported in

Table 1.

It is remarkable that both the weighted and unweighted means underperform for higher

p, simply because the variance becomes too high due to some outliers in estimated ACF.

Median and OLS estimates are robust to these, and mean square errors are reasonably small.

The median has a smaller bias for small values of p, while the OLS estimate has generally a

smaller standard deviation. A globally good choice of p appears to be 10 or 15 for this type of

persistence.

In Table 2, we report the performance of the closed form estimator of the remaining model

parameters. For the estimator of β we use a fixed order p = 10 and equal weights, while for

the estimator of α we use q = 1. Experiments with higher q did not improve the results with

q = 1 in terms of mean squared error, so we only report the latter results. For the estimation

of ν we use both estimators proposed in Section 4, the profiled likelihood and the profiled

moment estimator. Both estimators are found by a grid search on the interval [1, 3]. Recall

that the estimator of β is independent of the estimator of ν, while estimation of the remaining

parameters, i.e. ω, θ and α depends on the method to estimate ν.

The results corroborate the theoretical finding that both estimators are consistent. Estima-

tion of ω, the scale parameter, and θ, the sign effect, seems rather unaffected by the estimation

of ν. That is, bias and variance of ω̂ and θ̂ are almost identical under the likelihood and the

moment estimation. The precision of both ω̂ and θ̂ is only slightly higher under Gaussian

compared to GED(ν = 1.5) innovations.

Quite different results are obtained for the estimation of the size effect, α, and the GED

parameter ν. The moment estimator of α has a negative bias and higher variance than the

likelihood estimator. Moreover, the moment estimator deteriorates under fat tails of the inno-

vation distribution in the sense that the bias aggravates and the variance increases. For the
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likelihood estimator, on the other hand, exploiting the information of the innovation distri-

bution turns out to be beneficial: both bias and variance decrease under GED compared to

Gaussian innovations.

For the estimation of ν, the moment estimator has a positive, the likelihood estimator a

negative bias, while the latter has a smaller variance than the former. Again, the likelihood

estimator is more precise under GED innovations than under Gaussianity, and now this also

holds for the moment estimator.

7.2 Application

We investigated the performance of our different estimators of β on a large dataset, the de-

meaned daily (close to close) return on the S&P500 index from 1950-2012, a total of 15757

observations. This data is quite heavy tailed, with a tail thickness parameter around three,

which implies that the second moments of returns may exist but the fourth ones do not.

Eviews computed the following parameter estimates using the default numerical optimization

algorithm. It took 26 iterations to achieve convergence and the results are shown below.

estimate standard error

β 0.9866 0.00135

ω -0.2542 0.01729

θ -0.0685 0.003675

α 0.1353 0.00650

ν 1.3726 0.012485

The process is quite persistent, which agrees with much earlier work. The tail thickness

parameter is lower than that in Nelson. The parametric test of the leverage effect yields a

t-statistic of nearly -19, indicating strong evidence. However, the nonparametric test based on

(16) yields a smaller t-statistic of -4.666, which is still significant but less so. This test however,

is robust to the choice of error distribution so long as it is symmetric.

We then investigate three estimators of β with regard to the choice of p : the mean of the

ratio, the median of the ratio, and the no intercept regression estimator. In Figure 1, we show

the value of the estimated β against the number of lags p used for p = 4, . . . , 100. The straight

mean of the ratio estimator is generally above one in value. The median estimator is generally

below the MLE, while the no intercept regression estimator is much closer to the MLE value

than the others. We also looked at using p up to a thousand, and more or less the same outcome

is observed, except as may be expected, the mean of the ratio estimator becomes very volatile

due to the appearance of occasional small and negative values at the long lags; this affects the

median and the regression estimators much less.

10



p β̂ s.e. β̂w s.e. β̂rob s.e. β̂ols s.e.

n = 1000

5 0.936 0.089 0.933 0.079 0.913 0.096 0.884 0.073

10 0.957 0.542 0.950 0.324 0.907 0.099 0.868 0.060

15 0.863 3.605 0.943 1.133 0.894 0.115 0.856 0.065

20 0.795 3.647 0.892 2.038 0.875 0.131 0.845 0.070

25 0.600 3.673 0.798 2.466 0.851 0.149 0.834 0.076

30 0.643 5.838 0.762 2.946 0.831 0.161 0.824 0.080

35 0.690 6.183 0.738 3.455 0.819 0.165 0.816 0.085

40 0.518 6.418 0.694 3.857 0.805 0.173 0.808 0.087

45 0.466 5.891 0.649 4.152 0.794 0.176 0.803 0.090

50 0.516 5.379 0.624 4.322 0.788 0.177 0.798 0.092

n = 5000

5 0.905 0.028 0.905 0.027 0.902 0.037 0.896 0.027

10 0.911 0.023 0.908 0.017 0.900 0.035 0.894 0.019

15 0.734 6.087 0.870 1.432 0.901 0.032 0.891 0.018

20 0.888 5.773 0.848 2.948 0.898 0.038 0.889 0.019

25 0.878 4.876 0.861 3.524 0.893 0.044 0.886 0.019

30 0.990 5.094 0.895 3.780 0.882 0.055 0.883 0.019

35 0.848 5.278 0.893 3.906 0.870 0.063 0.881 0.020

40 1.109 8.086 0.943 4.354 0.857 0.072 0.878 0.021

45 1.096 7.963 0.978 4.801 0.846 0.077 0.876 0.021

50 1.030 7.759 0.987 5.169 0.833 0.087 0.874 0.022

n = 10000

5 0.902 0.019 0.902 0.019 0.900 0.025 0.898 0.019

10 0.905 0.015 0.904 0.012 0.900 0.024 0.897 0.013

15 0.911 0.017 0.907 0.010 0.900 0.022 0.896 0.012

20 0.918 0.216 0.912 0.042 0.900 0.024 0.894 0.012

25 0.929 0.584 0.920 0.179 0.898 0.028 0.893 0.012

30 0.899 2.030 0.928 0.552 0.892 0.035 0.892 0.013

35 0.843 2.527 0.920 0.918 0.883 0.043 0.890 0.013

40 0.747 4.314 0.880 1.451 0.874 0.050 0.889 0.013

45 0.776 4.083 0.860 1.931 0.864 0.055 0.888 0.013

50 0.729 3.894 0.838 2.251 0.856 0.061 0.887 0.013

Table 1: Simulation results: estimation of β using simple mean (β̂), weighted mean (β̂w),

median (β̂rob), and regression without intercept (β̂ols). Simulated process: EGARCH(1,1) with

GED(ν = 1.5) innovations, ω = −0.3, α = 0.5, β = 0.9, and θ = −0.1. The number of

replications is 1000. 11



n = 1000 n = 2000 n = 5000 n = 10000

true mean s.d. mean s.d. mean s.d. mean s.d.

Gaussian

β 0.9 0.926 0.144 0.924 0.065 0.910 0.023 0.904 0.016

Profiled moment estimator

ω -0.3 -0.218 0.427 -0.227 0.195 -0.269 0.069 -0.285 0.047

θ -0.1 -0.092 0.187 -0.103 0.129 -0.097 0.087 -0.098 0.060

α 0.5 0.256 0.287 0.343 0.217 0.449 0.107 0.475 0.059

ν 2.0 2.367 0.510 2.225 0.415 2.059 0.253 2.014 0.153

Profiled likelihood estimator

ω -0.3 -0.211 0.412 -0.222 0.191 -0.267 0.069 -0.284 0.048

θ -0.1 -0.096 0.197 -0.106 0.134 -0.098 0.089 -0.099 0.061

α 0.5 0.560 0.234 0.516 0.142 0.507 0.068 0.501 0.042

ν 2.0 1.796 0.344 1.880 0.249 1.942 0.179 1.964 0.123

GED with ν = 1.5

β 0.9 0.931 0.140 0.928 0.038 0.910 0.022 0.904 0.015

Profiled moment estimator

ω -0.3 -0.228 0.444 -0.218 0.120 -0.282 0.071 -0.300 0.050

θ -0.1 -0.091 0.205 -0.101 0.140 -0.101 0.095 -0.098 0.071

α 0.5 0.125 0.352 0.250 0.339 0.434 0.149 0.473 0.063

ν 1.5 1.908 0.491 1.772 0.393 1.562 0.207 1.517 0.091

Profiled likelihood estimator

ω -0.3 -0.218 0.423 -0.212 0.119 -0.279 0.072 -0.299 0.050

θ -0.1 -0.096 0.218 -0.104 0.147 -0.102 0.097 -0.099 0.071

α 0.5 0.542 0.223 0.521 0.123 0.509 0.056 0.504 0.038

ν 1.5 1.398 0.232 1.446 0.162 1.476 0.108 1.485 0.078

Table 2: Simulation results for estimated EGARCH(1,1) processes. Number of replications is

1000.
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Figure 1: Estimated β for the S&P500 returns using the mean of ratios as in (??)

with flat weights and p = 4, . . . , 100 (horizontal axis), the median of ratios, and the

no-intercept regression estimator. The straight line is the MLE.

We next show a scatter plot of the empirical autocorrelations along with the fitted regression

line, see Figure 2. We show the first 1001 values, where the estimator is determined from the

first p = 100 of them. The scatter plot shows fairly good agreement with a linear fit. The

lines corresponding to the mean or median estimator of β are very close to the regression line.

We have β̂ = 1.002, β̂ols = 0.986, and β̂rob = 0.976, all of which are quite close although the

straight average of the ratio violates the stationarity constraint, which could pose problems if

it were plugged into a numerical optimization algorithm.

8 Conclusions

We have shown that a simple closed form estimator of the EGARCH is consistent, asymptot-

ically normally distributed, and has reasonable finite sample properties. We recommend this
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Figure 2: Scatterplot of empirical autocorrelations of zt = log y2
t , γ(k + 1) (vertical

axis) vs γ(k) (horizontal axis), k = 1, . . . , 1000. The straight line is the no intercept

regression line with slope 0.986 obtained using the first 100 observations of (γ(k), γ(k+

1)).

estimator in large samples, or as starting values for estimators requiring numerical optimization.

Several directions for future work are possible. For example, one may find out the best way

to choose the lag order p and the weighting scheme used in the estimation of β. The explicit

expression of the asymptotic variance covariance matrix can be derived. And finally, empirical

applications will show the utility of the estimator.
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Appendix

Proof of Theorem 1. We first note that we can write η̂(ν) = h(Un; ν) for some smooth

(meaning, for x = u, v, |∂h(u, v)/∂x| ≤ r(u) with supn Er(Un) < ∞) function h of the vector

Un and parameter ν and η(ν) = h(EUn; ν), where

Un =




1
n

∑n
t=1 zt

1
n

∑n
t=1 z2

t
1
n

∑n
t=1 ztsgn(yt−1)

1
n

∑n
t=2 ztzt−1

...
1
n

∑n
t=p+2 ztzt−p−1




≡ 1

n

n∑

t=1

ut.

From the stationarity and geometric ergodicity, we have Un → EUn with probability one (wp1)

and furthermore, for some symmetric positive definite Ψ,

√
n[Un − EUn] =⇒ N(0, Ψ).

Hence, by the delta method (15) follows.

We now turn to the properties of ν̂m. By the smoothness of h with respect to ν, we have

wp1

sup
ν∈V

|η̂(ν) − η(ν)| −→ 0.

It follows that (wp1)

sup
ν∈V

∣∣∣C8(ν; ω̂(ν), β̂, γ̂(ν), θ̂(ν)) − C8(ν; ω(ν), βo, γ(ν), θ(ν))
∣∣∣ −→ 0.

Furthermore, mn = C8(νo; ωo, βo, γo, θo) + o(1) wp1 provided Ey2
t < ∞. The function

C8(ν; ω(ν), βo, γ(ν), θ(ν)) is monotonic in ν over the range [1, 3] (which can be seen numerically).

It follows that the equation

C8(ν; ω(ν), βo, γ(ν), θ(ν)) = C8(νo; ωo, βo, γo, θo)

has a unique solution at ν = νo. Therefore, ν̂m is consistent.

We have

mn − Emn + C8(νo; ωo, βo, γo, θo) = C8(ν̂m; ω̂(ν̂m), β̂, γ̂(ν̂m), θ̂(ν̂m)).

Denote by P̂ (ν) = C8(ν; ω̂(ν), β̂, γ̂(ν), θ̂(ν)) the random function of ν induced by the profile

estimation and P (ν) = C8(ν; ω(ν), βo, γ(ν), θ(ν)). By the mean value theorem, for ν̃ with

15



|ν̃ − νo| ≤ |ν̂ − νo| we have

C8(ν̂m; ω̂(ν̂m), β̂, γ̂(ν̂m), θ̂(ν̂m))

= C8(νo; ω̂(νo), β̂, γ̂(νo), θ̂(νo)) +
∂P̂ (ν)

∂ν

}

ν=ν̃

(ν̂m − νo)

= C8(νo; ω̂(νo), β̂, γ̂(νo), θ̂(νo)) +
∂P (ν)

∂ν

}

ν=νo

(ν̂m − νo)

+

[
∂P̂ (ν)

∂ν

}

ν=ν̃

− ∂P (ν)

∂ν

}

ν=νo

]
(ν̂m − νo)

By the uniform convergence arguments and the consistency of ν̃ we have

∂P̂ (ν)

∂ν

}

ν=ν̃

− ∂P (ν)

∂ν

}

ν=νo

= op(1).

Furthermore, by similar arguments

C8(νo; ω̂(νo), β̂, γ̂(νo), θ̂(νo))

≃ C8(νo; ωo, βo, γo, θo) +
∂C8(νo; ω, βo, γo, θo)

∂ω

}

ω=ωo

[ω̂(νo) − ωo]

+
∂C8(νo; ωo, β, γo, θo)

∂β

}

β=βo

[β̂ − βo]

+
∂C8(νo; ωo, βo, γ, θo)

∂γ

}

γ=γo

[γ̂(νo) − γo]

+
∂C8(νo; ω, βo, γo, θ)

∂θ

}

θ=θo

[θ̂(νo) − θo].

It follows that

√
n(ν̂m − νo)

≃
[

∂P (ν)

∂ν

}

ν=νo

]−1

[mn − Emn]

−
[

∂P (ν)

∂ν

}

ν=νo

]−1 [
∂C8(νo; ω, βo, γo, θo)

∂ω

}

ω=ωo

√
n[ω̂(νo) − ωo]

− ∂C8(νo; ωo, β, γo, θo)

∂β

}

β=βo

√
n[β̂ − βo]

− ∂C8(νo; ωo, βo, γ, θo)

∂γ

}

γ=γo

√
n[γ̂(νo) − γo]

− ∂C8(νo; ω, βo, γo, θ)

∂θ

}

θ=θo

√
n[θ̂(νo) − θo]

≡ A
⊺√

nd(Wn),
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for some vector A and some smooth function d of the vector Wn, where

Wn =




1
n

∑n
t=1 zt

1
n

∑n
t=1 z2

t
1
n

∑n
t=1 ztsgn(yt−1)

1
n

∑n
t=2 ztzt−1

...
1
n

∑n
t=p+2 ztzt−p−1

1
n

∑n
t=1 |yt|




≡ 1

n

n∑

t=1

wt.

Under our conditions √
n(Wn − EWn) =⇒ N(0, Ψ),

where Ψ = lrvar(wt) < ∞. Therefore,
√

n(ν̂m − νo) is asymptotically normal. It follows that√
n(φ̂m − φo) by further application of the delta method. �
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