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Abstract 

We consider a non–cooperative multilateral bargaining game and study an action–dependent bargaining 
protocol, that is, the probability with which a player becomes the proposer in a round of bargaining 
depends on the identity of the player who previously rejected. An important example is the frequently 
studied rejector–becomes–proposer protocol. We focus on subgame perfect equilibria in stationary 
strategies which are shown to exist and to be efficient. Equilibrium proposals do not depend on the 
probability to propose conditional on the rejection by another player, though equilibrium acceptance 
sets do depend on these probabilities. Next we consider the limit, as the bargaining friction vanishes. In 
case no player has a positive probability to propose conditional on his rejection, each player receives his 
utopia payoff conditional on being recognized and equilibrium payoffs are in general Pareto inefficient. 
Otherwise, equilibrium proposals of all players converge to a weighted Nash Bargaining Solution, 
where the weights are determined by the probability to propose conditional on a rejection. 
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1 Introduction

This paper examines the convergence of equilibrium payoffs to the asymmetric Nash bar-

gaining solution in a non–cooperative bargaining game. In contrast to the existing litera-

ture on this topic, we allow for the proposer selection process to be action–dependent, that

is, influenced by the players’ actions throughout the game.

The study of non–cooperative bargaining games has been strongly influenced by Ru-

binstein (1982). In his setup, two impatient players take turns in proposing a division of

some surplus until one player agrees to the opponent’s current offer. The unique division

is supported by subgame–perfect equilibrium. The corresponding equilibrium strategies

are stationary. The equilibrium payoffs depend on the degree of the players’ impatience

and converge to the well–known Nash bargaining solution (Nash 1950, 1953) in the limit

as the players’ impatience vanishes. A similar support result for the Nash bargaining solu-

tion is due to Binmore, Rubinstein, and Wolinsky (1986). These results cannot be easily

reproduced in setups with more than two players. In particular, the subgame–perfect

equilibrium payoffs can no longer be predicted uniquely.1

It is common in the literature to restrict attention to those subgame–perfect equilibria

which are in stationary strategies, an early example is Hart and Mas-Colell (1996). This

allows for sharp predictions of equilibrium payoffs in the limit as the cost of delay becomes

small. For instance, Kultti and Vartiainen (2010) find convergence to the Nash bargaining

solution when Rubinstein’s model is extended to an arbitrary number of players who take

turns proposing in a fixed order. One alternative model selects the proposer in each

round according to a time–invariant probability distribution. Laruelle and Valenciano

(2008) and Miyakawa (2008) show the convergence of equilibrium payoffs to an asymmetric

Nash bargaining solution (Kalai 1977) where the time–invariant probability distribution

corresponds to the vector of bargaining weights.

Both of the above results are special cases of Britz, Herings, and Predtetchinski (2010),

who model the proposer selection process as a Markov chain, and obtain convergence to the

asymmetric Nash bargaining solution where the weight vector is given by the stationary

distribution of the Markov chain. The selection of proposers by a Markov chain, and all

its special cases, is action–independent: The actions taken by the players in the game have

no effect on the identity of the next proposer. To the best of our knowledge, the entire

literature that has provided non–cooperative support for the asymmetric Nash bargaining

1One way to restore the uniqueness of subgame–perfect equilibrium is to consider a bargaining process

where an agreement is reached in several steps and only a subset of the players bargain with each other

at each step. Examples of such “partial agreements” can be found in Chae and Yang (1994), Krishna and

Serrano (1996), and Suh and Wen (2006). A similar approach has been applied to a coalition formation

problem by Moldovanu and Winter (1995).
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solution considers action–independent protocols only.

We argue that this is a serious limitation because action–dependent protocols are very

common in the rest of the bargaining literature. One simple and intuitively appealing

example is the protocol where the player who rejects the current proposal is automatically

called to make the next proposal. This rejector–becomes–proposer protocol has been in-

troduced in Selten (1981) and studied extensively in both the bargaining and the coalition

formation literature, see for example Chatterjee, Dutta, Ray, and Sengupta (1993), Bloch

(1996), Ray and Vohra (1999), Imai and Salonen (2000), and Bloch and Diamantoudi

(2011). The protocol we study in this paper is more general than the rejector–becomes–

proposer protocol. Following Kawamori (2008), we are interested in the case where the

identity of the player who rejects a proposal may influence the probability by which a par-

ticular player becomes the next proposer. Since the accept/reject decisions of the players

influence the proposer selection, this is indeed an action–dependent protocol. Such pro-

tocols are considerably more difficult to analyze than action–independent ones, and the

literature has identified a number of cases where both types of protocol lead to surpris-

ingly different results. For instance, Chatterjee, Dutta, Ray, and Sengupta (1993) provide

examples for non-existence of equilibria as well as existence of equilibria with delay in the

context of an action–dependent protocol. On the contrary, it has been shown in Okada

(1996) that delay cannot occur at equilibrium and in Okada (2011) that equilibria exist

when the protocol is action–independent.2

Our results shed new light on the influence of the proposer selection process on the

bargaining outcome. Both theoretical and experimental research has emphasized the im-

portance of proposal making for bargaining power, see for instance Romer and Rosenthal

(1978), Knight (2005), and Kalandrakis (2006).

Some of our main findings are as follows. We first consider all subgame–perfect equi-

libria in stationary strategies. Equilibrium proposals do not depend on the probability

to propose conditional on the rejection by another player. Regarding results on the limit

of equilibrium payoffs as the continuation probability tends to one, we find a distinction

between two cases.

If none of the players has a positive probability of being the next proposer after his own

rejection, then the proposer in the initial round obtains his utopia payoff, that is his highest

payoff in the set of feasible payoffs that satisfy all the individual rationality constraints.

The equilibrium proposals of all players are independent of the continuation probability

2Similarly, there are examples for non-existence of equilibrium in Bloch (1996) under an action–

dependent protocol while Herings and Houba (2010) restore existence for an action–independent proposer

selection protocol. Duggan (2011) present a very general coalitional bargaining model where equilibrium

existence is shown for action–independent protocols. The paper points out that a similar approach to

establish equilibrium existence would not work when the protocol is action–dependent.
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and do not converge to a common limit. Since the initial proposer is selected according to

some given probability distribution, the utilities are in general not Pareto efficient, and do

therefore not correspond to an asymmetric Nash bargaining solution.

Otherwise, we find convergence of the equilibrium payoffs to a weighted Nash bargaining

solution, where the weights are determined by the probabilities of making a counter–offer.

Players with a zero probability of making a counter–offer receive a payoff of zero. The

existing results on non–cooperative bargaining games are for action–independent protocols

only and do not distinguish between the probability of making a proposal and the prob-

ability of making a proposal conditional on a rejection. Our paper argues that the latter

probabilities are the ones that really matter to explain bargaining power.

The paper is organized as follows. Section 2 formally introduces bargaining games with

action–dependent protocols. Section 3 presents a characterization of the set of subgame–

perfect equilibria in stationary strategies and shows that such equilibria exist. Section 4

discusses the relationship between the payoffs of stationary subgame–perfect equilibria

und the asymmetric Nash bargaining solution. In Section 5, we illustrate the findings of

Section 4 with an example. Section 6 concludes.

2 The Bargaining Game

We consider a bargaining game between finitely many players. The set of players is

N = {1, . . . , n}. Each player individually can only attain a disagreement payoff which

we normalize to zero. However, the players can jointly achieve any payoff vector v in a set

V ⊂ Rn if they unanimously agree on such a payoff vector. Each player is assumed to be

an expected utility maximizer. The set V of feasible payoffs and the bargaining protocol

are the main primitives of the model. We now introduce each in turn.

For vectors u and v in Rn, we write u ≥ v if ui ≥ vi for all i ∈ N, u > v if u ≥ v and

u 6= v, and u � v if ui > vi for all i ∈ N. A point v of V is said to be Pareto–efficient if

there is no point u in V such that u > v. A point v of V is said to be weakly Pareto–efficient

if there is no point u in V such that u� v. We write V+ to denote the set V ∩ Rn
+.

Our first assumption is as follows:

[A1] The set V is closed, convex, and comprehensive from below. There is a point v ∈ V
such that v � 0. The set V+ is bounded. Each weakly Pareto–efficient point of V+ is

Pareto–efficient.

We denote the set of Pareto-efficient points of V by P and write P+ for the set P ∩Rn
+.

Bargaining takes place in discrete time t = 0, 1, . . .. There are n+ 1 probability distri-

butions on the players denoted by π0, π1, . . . , πn, each of which belongs to the unit simplex

∆n in Rn.
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In round t = 0, a particular player is chosen as the proposer according to the probability

distribution π0 ∈ ∆n. The proposer then makes a proposal v ∈ V . Player 1 responds to

the proposal by either acceptance or rejection. Once a player i = 1, . . . , n− 1 has accepted

the proposal, it is the turn of player i+ 1 to accept or reject.3 Once player n has accepted

the proposal, the game ends and the approved proposal is implemented.

As soon as some player j ∈ N rejects a proposal in round t, the game ends with prob-

ability 1− δ > 0 and payoffs to all players are zero. With the complementary probability

δ, the game continues to round t + 1. The proposer in that round is then drawn from

the probability distribution πj. If the game continues perpetually without agreement, the

payoff to every player is zero.

The rejector–becomes–proposer protocol follows from specifying πii = 1 for all i ∈ N.
A polar opposite of the rejector–becomes–proposer protocol, where a rejector proposes

with probability zero in the next round, follows by setting πii = 0 for all i ∈ N. In

case π0, π1, . . . , πn all coincide, we are back in the familiar case of an action–independent

protocol with time–invariant recognition probabilities.

It is well–known that bargaining games with more than two players admit a wide multi-

plicity of subgame–perfect equilibria (SPE), see Herrero (1985) and Haller (1986). We will

restrict attention to subgame–perfect equilibria in stationary strategies (SSPE). A station-

ary strategy for player i consists of a proposal θi ∈ V which i makes whenever it is his turn

to propose and an acceptance set Ai ⊂ V which consists of all the proposals which player

i would be willing to accept if they were offered to him. We denote the social acceptance

set by A = ∩i∈NAi and write the profile of stationary strategies (θ1, A1, . . . , θn, An) more

concisely as (Θ,A).

3 Subgame Perfect Equilibria in Stationary Strategies

In this section, we consider the set of SSPEs of the bargaining game. Fix some profile of

stationary strategies (Θ,A). By definition of a stationary strategy, there is a unique payoff

vector which is expected in any subgame following a rejection by some player i ∈ N. We

refer to it as the vector of continuation payoffs after i’s rejection and denote it by qi(Θ,A).

Since it will be clear from the context, we omit the argument in the sequel. Moreover,

we define a vector r(Θ,A) of reservation payoffs by r(Θ,A) = (q11, . . . , q
n
n). Again, we

will omit the argument in the sequel. Under an action–independent protocol, one and

the same vector of continuation payoffs would result no matter which player rejected the

current proposal. Consequently, the reservation and continuation payoff vectors would

3Throughout the paper, for the sake of simplicity, we assume that players respond to a proposal in the

fixed order 1, . . . , n. All results would carry over to the case with arbitrary voting orders.

4



all be equal to each other. If, however, we allow for an action–dependent protocol, the

reservation payoff vector is not generally equal to any of the continuation payoff vectors.

This disparity between the reservation and continuation payoffs complicates the SSPE

analysis somewhat compared to action–independent protocols.

We will see that the reservation payoffs are important as an “acceptance threshold” in

a sense to be made precise in the next lemma.

For every i ∈ N , let S(i) = {j ∈ N |j ≥ i}. That is, S(i) is the set of players succeeding

player i in the response order, including i himself. We denote ∩j∈S(i)Aj by AS(i).

Lemma 3.1 Let (Θ,A) be an SSPE inducing reservation payoffs r. It holds that

1. If v ∈ V is such that vn > rn, then v ∈ An.

2. For every i = 1, . . . , n− 1, if v ∈ AS(i+1) and vi > ri, then v ∈ Ai.

3. For every i = 1, . . . , n, if v ∈ AS(i), then vj ≥ rj for all j ∈ S(i).

Proof: Consider a history of the game where player n has to respond to the proposal

v with vn > rn. If player n accepts, the proposal passes and he receives vn. If he rejects,

he expects to receive rn, so he would have a profitable deviation at this history. This

establishes the first part of the lemma. Now consider a history of the game where player

i ∈ N\{n} has to respond to the proposal v with vi > ri and v ∈ AS(i+1). If player i

accepts v, this proposal passes and he receives vi. Otherwise, he receives ri, so he would

have a profitable deviation at this history. It remains to show the third part of the lemma.

Suppose by way of contradiction that v ∈ AS(i) but there is j ≥ i such that vj < rj. If

player j unilaterally deviates to reject rather than accept the proposal v, he receives a

payoff of rj. This deviation is profitable. �

Lemma 3.1 describes the role of the vector r as an acceptance threshold in an SSPE.

For a payoff vector to be accepted, it needs to be weakly greater than r in all components.

Conversely, being strictly greater than r in all components suffices for acceptance. Under an

action–independent protocol, it would be immediate that the vector of reservation payoffs

belongs to the feasible set since it is equal to the continuation payoffs. With an action–

dependent protocol, however, we have to show explicitly that the reservation payoff vector

belongs to the feasible set and that it is therefore possible for a proposer to make a proposal

which is unanimously acceptable. This is the claim of the next lemma.

Lemma 3.2 Let (Θ,A) be an SSPE inducing reservation payoffs r. Then there exists

v ∈ V such that v � r ≥ 0. In particular, it holds that v ∈ A and r ∈ V+.
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Proof: Any player i can choose to reject all proposals, a strategy that never leads to

an agreement irrespective of the strategy used by the other players, and a payoff of zero

for all players. It follows that player i’s payoff in any subgame perfect equilibrium cannot

be smaller than zero. In particular, it follows that r ≥ 0.

Suppose now that there is no v ∈ V such that v � r. In view of Assumption A1, there

is no v ∈ V such that v > r. It now follows from Lemma 3.1.3 that A ⊂ {r}. First suppose

that A = ∅. In this case equilibrium strategies lead to payoffs of zero for all players, so

r = 0. But under Assumption A1 there is a vector v ∈ V with v � 0, a contradiction to

our supposition. Hence A = {r}.
Then, after a rejection, only two outcomes are possible: Either agreement on r is

reached at some future time or zero payoffs result. The vector of players’ continuation

payoffs after a rejection is therefore a convex combination of 0 and r, where the former has

a weight of at least 1− δ. But this implies ri ≤ δri for all i ∈ N . Since δ < 1, we conclude

that r = 0. As before, this leads to a contradiction.

We conclude that there is a v ∈ V such that v � r. Parts 1 and 2 of Lemma 3.1 imply

that v ∈ A. The fact that V is comprehensive from below implies that r ∈ V . �

Lemma 3.2 implies that at an SSPE a proposer is always able to make a proposal

which gives all players a strictly higher payoff than their reservation payoffs, and which

will therefore be accepted. In a model with an action–independent protocol such as Britz,

Herings, and Predtetchinski (2010), it would be immediate that the proposer finds it in his

best interest to make such an acceptable proposal. Under an action–dependent protocol,

however, the aforementioned disparity between the continuation and reservation payoffs

leads to a complication here. In particular, if some continuation payoff qji is sufficiently

high, one might conjecture that player i could obtain a higher payoff by making a proposal

which will be rejected by player j than by making an acceptable proposal himself. The

next step in our argument is to show that no such behavior is consistent with SSPE. On

the contrary, immediate agreement is reached in an SSPE.

Lemma 3.3 Let (Θ,A) be an SSPE. For all i ∈ N it holds that θi ∈ A and θii > 0.

Proof: Let ui be the SSPE utility to player i at a history where it is player i’s turn to

make a proposal. It holds that ui = θii if θi ∈ A and ui = qji if θi /∈ A, where j is the least

element of N such that θi /∈ Aj.
By making a proposal v ∈ A, player i guarantees himself a payoff of vi. It follows that

ui ≥ vi for every v ∈ A. In particular ui > 0 since by Lemma 3.2 there is a vector v ∈ A
such that vi > 0.

Let U = {0} ∪ (A ∩ {θ1, . . . , θn}). This is the set of all possible outcomes of the game

if play follows the strategy (Θ,A). Take any j ∈ N . The vector qj of continuation payoffs
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is a convex combination of the vectors in U , with 0 having a weight of at least 1− δ. We

know from the preceding paragraph that ui ≥ θki for all θk ∈ U and that ui > 0. It follows

that ui > qji . Since this holds for each j ∈ N , we have θi ∈ A. Moreover, θii = ui > 0. �

The following lemma claims that SSPE proposals are Pareto–efficient and give each

responding player exactly their reservation payoffs. The proof is standard in the bargaining

literature and is therefore omitted.

Lemma 3.4 Let (Θ,A) be an SSPE inducing reservation payoffs r. For every i ∈ N, it

holds that θi ∈ P+ and θij = rj for all j ∈ N\{i}.

For every i ∈ N , we define αi ∈ [0, 1) by

αi =
δπii

1− δ + δπii
.

Since each proposal belongs to the social acceptance set, the reservation payoffs can be

computed as follows:

ri = δ
n∑
j=1

πijθ
j
i = δπiiθ

i
i + δ(1− πii)ri.

Solving for ri, we see that

ri = αiθ
i
i.

Theorem 3.5 below collects all the necessary conditions that we have derived so far for

a strategy profile to be an SSPE.

Theorem 3.5 If (Θ,A) is an SSPE inducing reservation payoffs r, then

AS(i) ⊂ ∩j=i,...,n{v ∈ V |vj ≥ rj}, i ∈ N, (3.1)

An ⊃ {v ∈ V |vn > rn}, (3.2)

Ai ⊃ {v ∈ AS(i+1)|vi > ri}, i ∈ N\{n}, (3.3)

θij = rj, i ∈ N, j ∈ N \ {i}, (3.4)

ri = αiθ
i
i, i ∈ N, (3.5)

θi ∈ P+ ∩ A, i ∈ N. (3.6)

Conversely, we now turn to sufficient conditions for an SSPE. Consider the following

system of equations.

θi ∈ P+, (3.7)

θij = αjθ
j
j , j ∈ N \ {i}. (3.8)
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Theorem 3.6 Let the proposals Θ satisfy Equations (3.7)–(3.8). There exists a collection

of sets A = (A1, . . . , An) such that (Θ,A) is a stationary subgame perfect equilibrium.

Proof: Let Θ be proposals satisfying Equations (3.7) and (3.8). We define acceptance

sets A1, . . . , An inductively as follows: Let

An = {v ∈ V | vn ≥ αnθ
n
n} .

Now suppose that for some player i ∈ N \ {n}, the acceptance set Aj has been defined for

all j ∈ S(i+ 1). For any v ∈ V , we define player i’s payoff upon acceptance of v as follows:

βi(v) =


vi, if v ∈

n⋂
j=i+1

Aj,

δθii

(
πki − δπki + δπii

1− δ + δπii

)
, if v /∈

n⋂
j=i+1

Aj, k = min{j ≥ i+ 1 : v /∈ Aj}.

As will become clear from the subsequent discussion, the payoff βi(v) corresponds to the

payoff to player i from accepting the proposal v. We define

Ai =
{
v ∈ V | βi(v) ≥ αiθ

i
i

}
.

The construction of acceptance sets A is now complete. We denote by A the concomitant

social acceptance set A1 ∩ · · · ∩ An.

We claim that θi ∈ A for each i. Indeed, by Equation (3.8) and because αj ≤ 1 it holds

that θij ≥ αjθ
j
j for each i and j. Now we show that θi ∈ Aj for every j by induction on j.

Since θin ≥ αnθ
n
n we have θi ∈ An. Now suppose that for some j ∈ N \ {n} it holds that

θi ∈ Ak for all k ∈ S(j + 1). Then βj(θ
i) = θij ≥ αjθ

j
j . It follows that θi ∈ Aj, thereby

completing the induction step.

Since player j’s proposal θj is accepted, the continuation payoff to player i after a

rejection of a proposal by player k can now be computed as follows:

qki = δ
n∑
j=1

πkj θ
j
i = δπki θ

i
i + δ(1− πki )αiθ

i
i = δθii

(
πki − δπki + δπii

1− δ + δπii

)
. (3.9)

The reservation payoffs are given by

ri = qii = αiθ
i
i.

The payoff βi(v) upon acceptance of v is vi if v ∈ Aj for every player j ∈ S(i+ 1) and it is

qki otherwise, where k is the lowest indexed player in S(i + 1) with v /∈ Ak. Thus βi(v) is

the payoff to i from accepting the proposal v. Under the strategy (Θ,A), player i accepts

the proposal v if and only if βi(v) ≥ ri.
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We claim that (Θ,A) is an SSPE. Clearly, it is a profile of stationary strategies. To

show that it is an SPE, applying the one–shot deviation property, we have to show that at

any history the acting player has no profitable one–shot deviation.

Consider first a one–shot deviation in the accept/reject decisions. The preceding discus-

sion shows that a responder accepts a proposal if and only if accepting makes him weakly

better off than rejecting. Hence, a one–shot deviation cannot be profitable.

Now consider a one–shot deviation by player i, who proposes some v ∈ V \{θi}. Suppose

that v 6∈ A. Then, the expected payoff to player i from proposing v is qki where k is the first

player in the response order to reject v. It follows from Equation (3.9) that qki ≤ δθii ≤ θii,

so the deviation is not profitable. Now consider the case where v ∈ A. Then vj ≥ αjθ
j
j for

every j ∈ N and hence vj ≥ θij for every j ∈ N \{i}. Since the vector θi is Pareto–efficient,

we must have vi ≤ θii. Again, the deviation is not profitable. �

Theorem 3.7 There exist proposals Θ which solve Equations (3.7) and (3.8).

Proof: Let us define ρ ∈ ∆n and λ ∈ [0, 1) as follows. If πii > 0 for at least one i ∈ N ,

then

ρi =
πi
i∑n

j=1 π
j
j

, i ∈ N,

λ =
δ
∑n

i=1 π
i
i

1−δ+δ
∑n

i=1 π
i
i
.

If πii = 0 for all i ∈ N , then we set λ = 0 and ρi = 1
n

for all i ∈ N . After elementary

manipulations, Equations (3.7) and (3.8) reduce to the system of characteristic equations

which describes equilibrium proposals in a bargaining model with time-invariant recogni-

tion probabilities ρ and continuation probability λ. The existence of a solution to the latter

system has been shown by Banks and Duggan (2000) in their Theorems 1 and 2.4 �

4 SSPE payoffs and the Nash bargaining solution

In bargaining games with action–independent protocols, all SSPE proposals converge to a

common limit as the continuation probability goes to one. Since all proposals are Pareto–

efficient for all values of the continuation probability, the common limit of SSPE proposals

is Pareto–efficient as well. It corresponds to an asymmetric Nash bargaining solution, where

4In Banks and Duggan (2000) the continuation probability is 1, and players have time preferences with

a discount factor equal to δ. Voting is simultaneous rather than sequential, and attention is restricted

to stage-undominated voting strategies. For the case with time-invariant recognition probabilities, both

modeling choices lead to exactly the equilibrium conditions on proposals given by (3.7) and (3.8). The

equilibrium conditions are also the same as in a rejector–becomes–proposer model where players have

heterogeneous time discount factors αi.
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the bargaining weights are given by the transition probabilities involved in the bargaining

protocol. Under an action–dependent protocol, however, it is not always true that all SSPE

proposals converge to the same limit. In particular, SSPE proposals fail to converge when

πii = 0 for all i ∈ N . We deal with this case in the first subsection below, and we address

the case where πii > 0 for at least one i ∈ N in the second subsection below.

4.1 Failure of Convergence

One important implication of the foregoing analysis is that a responding player who does

not have positive probability of making a counter–offer will not be offered a positive payoff.

Indeed, if πii = 0 for some player i, then αi = 0 and so ri = 0.

Lemma 4.1 Let (Θ,A) be an SSPE inducing reservation payoffs r and let i ∈ N be a

player with πii = 0. Then it holds that ri = 0 and θij = 0 for all j ∈ N\{i}.

We define v̂ as the vector of utopia payoffs, where the utopia payoff of a player i ∈ N is

the highest payoff in V for player i that satisfies all the individual rationality constraints,

that is v̂i = max{vi ∈ R | v ∈ V+}. Consider the case where all players have zero

probability to make a counter–offer conditional on a rejection. That is, suppose πii = 0 for

all i ∈ N . In that case, Theorem 3.5 readily implies that at any history where player i is

the proposer, he receives his utopia payoff in an SSPE.

Theorem 4.2 Assume πii = 0 for all i ∈ N. In any SSPE, the payoff to player i ∈ N is

equal to π0
i v̂i.

It is important to note that the above statement does not involve the discount factor

δ at all. In the case where πii = 0 for all i ∈ N the initial proposer always receives his

utopia payoff. The proposals involved in an SSPE do not converge to a common limit. If

P+ is not a simplex and if π0 � 0, this implies in addition that the ex ante SSPE payoffs

allocation is Pareto–inefficient and does not correspond to any asymmetric Nash bargaining

solution. There is a feasible payoff allocation which all players would prefer over starting

the bargaining game and playing the strategies prescribed by an SSPE.

4.2 Convergence to a Nash bargaining solution

In this section, we deal with the case where at least one player does have a positive

probability to make the next proposal following his own rejection. From now on we impose

Assumptions A2 and A3 below. A vector η in Rn is a normal vector to V at a point v ∈ V
if (u− v)>η ≤ 0 for all u ∈ V . It is said to be a unit normal vector if ‖η‖ = 1.
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[A2] There is i ∈ N such that πii > 0.

[A3] There is a continuous function η : P+ → Rn such that η(v) is a unit normal vector

to V at the point v.

Assumption A3 implies that the boundary P+ does not have kinks. Notice that in view of

Assumption A1 we have ηi(v) > 0 for every i ∈ N such that vi > 0.

All the existing results on multilateral bargaining that show the convergence of equilib-

rium payoffs to an asymmetric Nash bargaining solution under an action–independent pro-

tocol rely on Assumption A3. Indeed, without such an assumption, Kultti and Vartiainen

(2010) provide an example where SSPE payoffs fail to converge to the Nash bargaining

solution and Herings and Predtetchinski (2011) show that the limit of SSPE payoffs may

not be unique.

Lemma 4.3 For every m ∈ N, let Θm be SSPE equilibrium proposals of the game with

continuation probability δm. Suppose that the sequence (δm)m∈N converges to 1. If the

sequence (Θm)m∈N converges to Θ̄, then θ̄1 = · · · = θ̄n. Moreover, for every i ∈ N, the

point θ̄i is Pareto–efficient.

Proof: We prove first that for every i ∈ N the point θ̄i is Pareto–efficient. Suppose

not. Then, in view of Assumption A1, there is i ∈ N and v ∈ V such that v � θ̄i. But

then v � θim for m large enough, which contradicts the fact that θim ∈ P+.

Take i ∈ N such that πii > 0 and take any other player j ∈ N . We wish to show that

θ̄j = θ̄i. For every m ∈ N, for every k ∈ N\{i, j}, it holds that θim,k = θjm,k = αm,kθ
k
m,k.

Taking the limit as m goes to infinity yields θ̄ik = θ̄jk. Furthermore, for every m ∈ N, we

have θjm,i = αm,iθ
i
m,i. Since αm,i converges to one as m tends to infinity, we obtain θ̄ji = θ̄ii.

We conclude that the vectors θ̄i and θ̄j can only differ in component j. Since both points

θ̄i and θ̄j are Pareto–efficient, we have θ̄i = θ̄j, as desired. �

The lemma above therefore justifies the following definition.

Definition 4.4 A limit equilibrium proposal is a proposal θ ∈ V for which there exist

sequences (δm)m∈N and (Θm)m∈N, where Θm are SSPE proposals in the game with contin-

uation probability δm, such that (θim)m∈N converges to θ̄ for every i ∈ N .

Since the proposals Θm in Lemma 4.3 all belong to the compact set V+, every se-

quence (Θm)m∈N has a convergent subsequence. This demonstrates the existence of a limit

equilibrium proposal. Lemma 4.3 implies that it is efficient.

Corollary 4.5 A limit equilibrium proposal exists. Each limit equilibrium proposal is

Pareto efficient.
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Theorem 4.6 Let θ̄ be a limit equilibrium proposal.

1. If πii = 0 for some i ∈ N, then θ̄i = 0.

2. Suppose there is exactly one player i ∈ N with πii > 0. Then θ̄i is player i’s utopia

payoff v̂i and θ̄j = 0 for j 6= i.

Proof: To prove Theorem 4.6.1, take a player i ∈ N with πii = 0 and observe that in each

SSPE θji = 0 for every j 6= i. Taking the limit of θjm,i along the appropriate sequence of

SSPEs yields θ̄i = 0. To prove Theorem 4.6.2, notice that θ̄j = 0 for j 6= i by Theorem 4.6.1.

The fact that θ̄i is player i’s utopia payoff follows from the fact that θ̄ is a Pareto–efficient

point of V . �

We proceed by showing that the limit equilibrium proposal is unique and is equal to

the asymmetric Nash bargaining solution where player i has weight πii. Given a vector

λ ∈ Rn
+ \ {0}, we define the λ–Nash product ρλ : Rn

+ → R by

ρλ(v) =
∏
i∈N

vλii , v ∈ Rn.

Definition 4.7 Given a vector λ ∈ Rn
+ \ {0}, the maximizer of the function ρλ on V+ is

called the λ–Nash bargaining solution.

Under our assumptions the maximizer of the function ρλ on V+ is indeed unique. It is

a Pareto–efficient point of V which is uniquely characterized by the following conditions:

for each i and j in N ,

if λi = 0, then vi = 0, (4.1)

if λi, λj > 0, then
viηi(v)

λi
=
vjηj(v)

λj
. (4.2)

Theorem 4.8 The limit equilibrium proposal is unique and is equal to the (π1
1, . . . , π

n
n)–

Nash bargaining solution.

Proof: We verify that each limit equilibrium proposal satisfies the conditions (4.1)–(4.2)

with λi = πii. Let

Ñ = {i ∈ N | πii > 0}.

Let (θ1, . . . , θn) be SSPE proposals in a game with continuation probability δ. By the

definition of the normal vector it holds for any two players i and j that

(θj − θi)>η(θi) ≤ 0.
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Notice that the proposals θi and θj can only differ in components i and j. Solving for the

inner product, we can therefore rewrite the previous inequality as

(θjj − θij)ηj(θi) + (θji − θii)ηi(θi) ≤ 0.

Substituting for θij and θjj from equation (3.8) and dividing by 1− δ yields

θjjηj(θ
i)

1− δ + δπjj
≤ θiiηi(θ

i)

1− δ + δπii
.

Let θ̄ be a limit equilibrium proposal. Taking the limit of the latter inequality along a

sequence of equilibrium proposals converging to θ̄ we obtain for all i, j ∈ Ñ ,

θ̄jηj(θ̄)

πjj
≤ θ̄iηi(θ̄)

πii
.

Interchanging the roles of the players i and j, we obtain the equality

θ̄jηj(θ̄)

πjj
=
θ̄iηi(θ̄)

πii
, i, j ∈ Ñ . (4.3)

This shows that θ̄ satisfies (4.2). The fact that θ̄ satisfies (4.1) follows at once from

Corollary 4.6.1. �

5 Example

The analysis of SSPE under an action–dependent protocol reveals two rather striking fea-

tures. First, only the “diagonal” probabilities π1
1, . . . , π

n
n are relevant for the SSPE payoffs,

together with the initial probability to propose π0 in case π1
1 = · · · = πnn = 0. The chance to

become a proposer after a rejection by another player is not a source of bargaining power.

A player whose probability to become a proposer after his own rejection is zero, will never

be offered a positive payoff. Second, the SSPE payoffs exhibit a discontinuity when all

the probabilities π1
1, . . . , π

n
n are equal to zero. In that case, whoever is the proposer in the

initial round can appropriate the entire surplus, which is no longer the case when πii is

non–zero for at least one i ∈ N.
The following example illustrates these two features. There are four players N =

{1, 2, 3, 4}. The vectors π1, . . . , π4 are given by

(
π1, π2, π3, π4

)
=


0 1 1 1− ε
1 0 0 0

0 0 0 0

0 0 0 ε

 .
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We first assume that ε > 0 and suppose that player 4 is the initial proposer with

probability zero. Player 4 appears very weak in the example at hand. In order for player

4 to become the proposer at all, some proposal must be accepted by players 1, 2, and 3

and then be rejected by player 4. Even in that case, player 4 becomes the next proposer

only with probability ε, which can be arbitrarily close to zero. Player 1 on the other hand,

could be the initial proposer with probability as high as one, becomes the next proposer for

sure whenever player 2 or player 3 makes a rejection, and becomes the next proposer with

probability 1 − ε whenever player 4 rejects. Nevertheless, our convergence result implies

that player 4 has all the bargaining power and receives his utopia payoff under the limit

equilibrium proposal. On the contrary, players 1, 2, and 3 receive zero payoffs in the limit

equilibrium proposal.

Assume next that ε = 0. In that case, we no longer have the convergence result pre-

sented in Section 4.2, but rather, we know from Section 4.1 that the initial distribution π0

determines the equilibrium payoffs, which, moreover, are independent from the continua-

tion probability δ. Since we assumed that player 4 is the initial proposer with probability

zero, he now receives an equilibrium payoff of zero. In the example at hand, player 3

appears to be a “weak” player in the sense that he can never become a proposer except

in the very first round. One would expect that if δ is large enough, player 3’s bargaining

power vanishes. However, irrespective of the value of δ, player 3 obtains his utopia payoff

in equilibrium when he is selected as the initial proposer.

6 Conclusion

We have considered multilateral bargaining games with action–dependent protocols. The

identity of the player who rejects the current proposal determines the probability distri-

bution from which the next proposer is drawn. Surprisingly, the probability with which a

player proposes after another player’s rejection turns out to be irrelevant for the prediction

of equilibrium proposals and payoffs. The probability with which a player proposes after

his own rejection is crucial for the equilibrium prediction. Our main results highlight a

discrepancy between the case where, conditional on his rejection, the probability to make

a counter–offer is zero for every player, and the case where for some player this probability

is positive.

If the probability to make a counter–offer is zero for all players, then the equilibrium

payoffs are determined by the utopia point and the recognition probabilities in the initial

round. The resulting equilibrium utilities do not generally converge to an asymmetric Nash

bargaining solution. In the case where at least one player does have a strictly positive

probability to make a counter–offer, we obtain the convergence to an asymmetric Nash
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bargaining solution, where the weights are assigned to the players in the proportion of their

probabilities to make a counter–offer. In particular, if all players have the same strictly

positive probability to make a counter–offer, then the equilibrium utilities converge to the

symmetric Nash bargaining solution, irrespective of how large that probability actually is.

One rather surprising outcome of our analysis is that the probability to become proposer

conditional on the rejection of another player does not affect equilibrium payoffs at all.

This also sheds new light on the findings in Miyakawa (2008) and Laruelle and Valenciano

(2008) concerning the protocol with time–invariant recognition probabilities, which is a

special case of our model. Under time–invariant recognition probabilities, it is impossible

to discern the effect of the probability to become proposer after one’s own rejection as

opposed to the probability to propose after another player’s rejection. Our more general

setup makes the importance of this distinction apparent.
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