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Abstract

In this paper we suggest a new framework for constructing mathematical models of
market activity. Contrary to the majority of the classical economical models (e.g. Arrow-
Debreu, Walras, etc.), we get a characterization of general equilibrium of the market as a
saddle point in a convex-concave game. This feature significantly simplifies the proof of
existence theorems and construction of the adjustment processes both for producers and
consumers. Moreover, we argue that the unique equilibrium prices can be characterized
as a unique limiting point of some simple price dynamics. In our model, the equilibrium
prices have natural explanation: they minimize the total excessive revenue of the market’s
participants.

Due to convexity, all our adjustment processes have unambiguous behavioral and al-
gorithmic interpretation. From the technical point of view, the most unusual feature of
our approach is the absence of the budget constraint in its classical form.
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1 Introduction

In the microeconomic theory, the concept of equilibrium is may be the most fundamental.
It equalizes the volumes of production and consumption of goods by appropriate equilib-
rium prices. This concept arises in the framework of neoclassical economics, originated
from the pioneering papers by Cournot [5], Walras [17], and Marshal [11]. The general
equilibrium theory was finalized in the seminal paper by Arrow and Debreu [4], where the
authors proved the existence of equilibrium prices under very mild and natural assump-
tions. Earlier in [2], Arrow has already shown the validity of welfare theorems roughly
stating that competitive markets tend toward an equilibrium allocation of resources which
is efficient from a social point of view. The subsequent developments were related mainly
with polishing some elements of this beautiful theory [12], [13].

Recall that in the Arrow-Debreu model, each consumer makes his/her choice in the
space of goods by maximizing the utility function subject to the budget constraint. This
framework perfectly fits our intuition. However, it can be criticized from the viewpoint of
computability and implementability.

Indeed, in the last decades we have learned from Optimization Theory that the gen-
eral optimization problems are may be the most difficult problems in Numerical Analysis.
They are very difficult (and will be always difficult) even for the most powerful computers.
How comes that a usual household, who has natural weakness even in the trivial arith-
metics, is able to solve in mind the optimization problems with tens thousands variables?
(This is the usual number of goods in the modern supermarkets.) For that, the standard
textbooks on microeconomics ([9]) advise to compute the gradient of the utility function
by estimating the marginal utilities of all goods. This procedure may fail by the following
reasons. First of all, in order to compute the marginal utility of one good, we need to
buy and try it. Clearly, in view of the high dimension, this cannot be implemented in
the real life. Secondly, this computation is useful only for estimating the gradients of dif-
ferentiable functions. However, the differentiability assumption on utility functions seems
to be rather restrictive and lacks the plausible justification. Indeed, among all arithmetic
operations there is exactly one, which is particularly easy for the human beings. This is
the computation of the maximum among two values. Therefore, we have good chances
that this operation is included somehow in the structure of utility functions. In this case,
the utility function becomes non-differentiable and the set of its marginal utilities has
nothing common with its actual (sub)gradient.

Finally, let us discuss the last element of Arrow-Debreu model, the budget constraint.
Due to the pioneering contribution of Walras (at least), the notion of budget constraint is
so old, natural and common, that there was seemingly no attempt to criticize its actual
role in the hidden difficulties related to this model. It is well known that one of the main
drawbacks of Arrow-Debreu model is the multiplicity of equilibrium prices. Moreover,
these prices are not endowed with any “functional” characterization, which could help
us in approaching them in the real-life economic models. In fact, equilibrium prices are
characterized as zeros of the excess demand correspondence. Under well-known assump-
tions on the consumers’ utilities, the excess demand correspondence becomes continuous
or even differentiable function (e.g., [8]). As shown in [6], its zeros are locally unique and
their number is generically finite. Moreover, the uniqueness of equilibrium prices is known
to hold only under very particular assumptions, e.g. in case of gross substitutes [3]. The
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absence of uniqueness is a serious drawback for any applied theory. It destroys a hope for
a reliable prediction of the future. Moreover, very often it forces to switch from the static
to dynamic models, which by the order of magnitude are more complicated. And this is
not only a theoretical difficulty. If our model is relevant, nonuniqueness implies that the
agents in the real life also can be attracted by different equilibrium states. Hence, we
cannot say too much about the final state of our system.

Coming back to the solvability issues, recall that in Optimization Theory there are
good reasons to believe that the maximal class of tractable models is formed by problems
with convex structure (e.g. see discussion in Section 2.1 in [14]). Some of the most gen-
eral problems of this type are the saddle-point problems, where we have a set of primal
variables (for minimization) and dual variables (for maximization). The potential func-
tion of this problem must be convex in primal variables and concave in the dual ones.
In principle, this framework could be used for describing the economic equilibrium with
prices as primal variables and production/consumption volumes as the dual ones. Unfor-
tunately, for its solvability it is necessary to have separable convex constraints for primal
and dual variables. This is exactly the place where the budget constraint destroys any
hope for existence of an efficient strategy, which could approach the equilibrium prices
and consumption/production volumes.

The above mentioned drawbacks of Arrow-Debreu model were served as the main
motivations for our research. The results will be presented in several subsequent papers,
which describe the way of equilibrium functioning of capitalistic economy. The main
elements of our theory are as follows.

• We introduce and explain a natural consumption strategy for buying the daily goods,
which can be seen as a numerical method for minimizing some special disutility
function. This function is derived from the natural consumption cycle:

Deciding on the budget
for single shopping.

⇒ Buying products with the
best quality/price ratio.

⇑ ⇓
Observation of the

results.
⇐ Consumption of the

products bought.

(1)

We argue that the implementation of this cycle by a customer needs only regular
updates of some subconscious estimates (individual prices for qualities), which al-
low to fight for a reasonable price of the products available on the market. The
corresponding average consumption pattern is inserted in our general model.

• We assume that the producer has enough computational power and informational
support in order to form the optimal production plan using the current market
prices for row materials and production items. His actions are restricted only by the
technological constraints.

• In our model, the production and consumption volumes, the income values, and
expenses are considered as constant flows. This means that we get the same amount
of corresponding objects in each standard interval of time (say, one week). Therefore,
if the income of a person or a firm during this interval is greater than the expenses,
then he/she can ensure a constant rate of growth of the own capital. If the income is
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strictly less than expenses, then the firm/person must leave the market. This is true
both for producers (bankruptcy), and for consumers (emigration from this market).

• If the regular income is equal to the regular expenses, then this is a marginal case,
which we call poverty. This unpleasant state is feasible both for firms and for indi-
viduals. In this case, their production/consumption volume is not maximal. They
implement only a fraction of their potential activity. A hidden consequence of this
marginal behavior is a possibility to balance the market. From the technical point
of view, introduction of poverty allows lifting the budget constraint into a joint
potential function, ensuring the convexity of the whole model.

• Our model admits a joint potential function, which represents the rate of growth of
the capital of whole society. We call it the Total Excessive Revenue (TER). This
function has the prices and salaries as primal variables (for minimization), and the
production and consumption volumes as dual variables (for maximization). The
main theorem of capitalistic economy reads then:

Equilibrium set of prices and salaries minimizes the total excessive revenue
of the whole society.

• The necessary and sufficient condition for existence an equilibrium in capitalistic
economy is an existence of certain sub-economy, which can survive autonomously.

• Our model can be seen as a convex-concave game. This implies the existence of
numerous simple algorithmic schemes for approaching its solution. We will show
that some of these adjustment processes have natural behavioral interpretations.
This can be seen as a confirmation of an intuitive evolutionary principle:

Winning economical systems provide more opportunities for rational behavior.

At the same time, the existence of convex-concave potential for the market implies that the
capitalistic economy is intrinsically stable. Clear goals of the participants and predictable
behavior of the prices result in a fast elimination of consequences caused by unexpected
shocks and perturbations.

In this paper we introduce the main elements of our model, prove existence and welfare
theorems. In the next paper we are going to consider different extensions of our model
on the macroscopic level, at which we can observe the role of money, tax regulations,
budget of the state, etc. We will discuss which elements can be easily incorporated in the
model preserving its convexity, and which of them do not possess this property. The latter
elements should be considered as dangerous since they introduce significant instability in
the system. Last paper of the series will be devoted to algorithmic aspects.

Notation. Our notation is quite standard. We denote by Rn the space of n-
dimensional column vectors x = (x(1), . . . , x(n))T , and by Rn

+ the set of all vectors with
nonnegative components. For x and y from Rn, we introduce the standard scalar product

〈x, y〉 =
n∑

i=1
x(i)y(i).

We denote by ej ∈ Rk the jth coordinate vector of the corresponding vector space. The
same notation is used for different spaces, which are always determined by the context.
Finally, Rk×m denotes the space of k×m-matrices, and (a)+ denotes the positive part of
value a ∈ R: (a)+ = max{a, 0}.
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2 Excessive revenue model

Let us introduce the excessive revenue model of capitalistic market with multiple goods.
For that, we need to describe the behavior of producers and consumers. We assume that
all participants of the market are rational. This means that, given a set of fixed prices,
they maximize their returns and minimize their expenditures by adjusting production
and consumption patterns, which are compatible with their needs and technological con-
straints. Then, we define the equilibrium production and consumption flows, which can
be balanced by some equilibrium prices. We prove that these prices minimize the total
excessive revenue of the whole society.

Our model can be applied to different types of markets with different relations between
participants. In order to introduce the main ideas, we start from the model of the simplest
local market describing, say, some tourist services. In this situation, we can think about
economic relations between the local food producers, restaurants and hotels with tourists,
which have a constant income, independent on this market. This level of details is sufficient
for demonstrating the main principles of construction of our model. Later, in Section 5
we consider a simple extension, which gives a possibility for consumers be employed by
producers.

2.1 Producers

Consider a market with K producers, which are able to produce n different goods. The
k-th producer has to choose the vector of production volumes uk ∈ Uk ⊂ Rn

+, where Uk is
the maximal technological set. We assume that the set Uk is closed and convex. In the
majority of realistic situations, this set is bounded.

Given a vector of prices p ∈ Rn
+, the producer’s yield is then 〈p, uk〉. At the same time,

we distinguish the following production costs of the producer.

(a) Internal cost comes from buying the necessary compounds, available on the market.
The internal technological matrix Ak ∈ Rn×n

+ defines the amounts of compounds
employed by the k-th producer. Its column Akej ∈ Rn is formed by the required
volumes of corresponding goods, which are necessary for producing one unit of prod-
uct j, j = 1, . . . , n, by producer k. The internal cost is then given by 〈p,Akuk〉.

(b) External cost comes from the necessity of buying some row materials outside the local
market. There are r different resources with corresponding vector of prices y ∈ Rr

+.
The external technological matrix Rk ∈ Rr×n describes the resources required by the
production process of k-th producer. Its column Rkej ∈ Rr represents the volumes of
corresponding resources needed for producing one unit of good j by k-th producer.
The external cost is then given by 〈y,Rkuk〉. We assume that the total amounts
of available external resources are bounded by some upper limits stored in vector
b ∈ Rr

+. Thus, the monetary value of available external resources is 〈y, b〉.
(c) Production cost includes expenditures, which are necessary for producing unit vol-

umes of the products. We put them into the vector ck ∈ Rn
+. Thus, the production

cost is given by 〈ck, uk〉.
(d) Fixed cost of maintaining the technological set Uk, denoted by κk ≡ κk(Uk) ∈ R+. It

can include the interest paid to the bank, different charges for renting the equipment,
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land use, etc. We assume its homogeneity:

κk(αUk) = ακk(Uk), α ∈ [0, 1]. (2)

We consider the production processes with single technology. Generalization of the
model onto the case of multiple technologies is straightforward, and we omit it for the
sake of simplicity.

Denote by π = (p, y) ∈ Rn+r the system of existing prices. We assume that our
producers are rational and that they have full informational support. Therefore, in order
to find the optimal production volume uk, the k-th producer just needs to solve the
following maximization problem:

PBk(π) def= max
uk∈Uk

[ 〈p− ck, uk〉 − 〈y, Rkuk〉 − 〈p,Akuk〉 ] . (3)

Clearly, this function is convex in π as the maximum of linear functions. Denote by
U∗k ≡ U∗k (π) the set optimal solutions of the maximization problem in (3). Thus, the k-th
producer’s revenue is

PRk(π) def= PBk(π)− κk = 〈p− ck −RT
k y −AT

k p, u∗k〉 − κk, u∗k ∈ U∗k (π).

It can happen, that the k-th producer can not cover his fixed cost κk. Recall that we
are speaking about repetitive production processes, which generate the constant flows of
goods. Producer with regular negative revenue cannot survive at such market. In order to
treat this situation, it is convenient to introduce the excessive revenue of k-th producer:

EPRk(π) def= ( PRk(π) )+ = max
uk∈Uk

(〈p− ck −RT
k y −AT

k p, uk〉 − κk

)
+

, (4)

which reflect the fact that a producer with negative revenue simply disappears from the
model. This is a convex function in π.

Note that in many situations the maximal technological set Uk can be modelled as
follows. We assume that k-th producer has mk production facilities. The capacities of
these facilities are given by vector fk ∈ Rmk

+ . Then the allocation matrix Gk ∈ Rmk×n

describes the volumes of the facilities required in the production process. Its column
Gkej ∈ Rmk represents the volumes of the facilities needed for producing one unit of good
j by k-th producer. Then,

Uk =
{
uk ∈ Rn

+ : Gkuk ≤ fk

}
. (5)

In principle, such a representation allows to define the shadow prices for equipment as
the Lagrange multipliers for corresponding linear inequality constraints. However, in this
paper we do not discuss such issues.

2.2 Consumers

Consider a market with L consumers. The i-th consumer has to decide on his regular
consumption volumes of different goods, which we store in the vector vi ∈ Rn

+. Given a
vector of prices p ∈ Rn

+, the consumer’s expenditure is then 〈p, vi〉.
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Let us describe now how the consumer selects the products. We assume that the
consumers judge the goods in accordance to the presence in them of d different qualities.
The personal estimates of the volumes of these qualities are stored in the matrix Qi ∈
Rd×n. Here, the value (Qiej)(k) is the personal estimate of i-th consumer for the amount
of quality k in one unit of the good j.

Further, we assume that each customer has some standards for regular consumptions
of certain amounts of qualities during the standard interval of time. We store these
standards in vectors σi ∈ Rd

+. Then, the feasible set of consumption flows for consumer i
is Vi :=

{
vi ∈ Rn

+ : Qivi ≥ σi

}
.

Now we introduce our main assumption. In order to find the optimal consumption
pattern vi, the i-th consumer needs to minimize his regular expenditure:

CEi(π) := min
vi∈Vi

〈p, vi〉. (6)

This function is concave in π as minimum of linear functions. Denote by V∗i ≡ V∗i (π) the
set of optimal solutions to problem (6).

Our main assumption is that the consumers are able to solve this problem. Of course,
this is a very strong assumption. As it was already mentioned in Introduction, the di-
mension of this problem can be very high. It is indeed difficult to believe that a normal
human being is able to find somehow a nearly optimal solution to (6). However, this
very important question has indeed a positive answer. In Section 6 we argue that this
consumption pattern can be approached by a natural consumption behavior, implemented
in a form of the regular shopping cycle (1).

Denote by τi ∈ R+ the budget of i-th consumer. Then the revenue of i-th consumer
can be computed as

CRi(π) := τi − CEi(π) = τi − 〈p, v∗i 〉, v∗i ∈ V∗i .

If the regular budget of i-th consumer is not sufficient for ensuring the standards σi, then
the consumer must leave the market (emigration). Thus, similarly to the producers, we
can introduce the excessive revenue of consumers:

ECRi(π) := ( CRi(π) )+ .

Clearly, this function is convex in π, and it can be represented as follows:

ECRi(π) = max
vi∈Vi

(τi − 〈p, vi〉)+ . (7)

2.3 Equilibrium market flows

In our model we need to introduce the levels of participation of the agents in the market
activity. These levels are described by certain coefficients between zero and one. They
depend on the regular revenues of the agents as follows.

If the revenue of an agent is strictly negative, then the participation level is zero. In
this case, a producer can not cover his fixed costs by the return, and a consumer can
not afford his purchases by the available budget. In both cases, the agent must leave the
market.
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If the revenue of an agent is strictly positive, then his participation level is one. Thus,
the agent generates an excessive revenue due to the return or budget surplus. This case
corresponds to the full (maximal) involvement of the agent in the market activity.

If the revenue of an agent is zero, then the situation is more delicate. For producer, this
means that his activity, even within the maximal technological set Uk does not generate
any profit. The situation is not changing if the production activities (the set Uk) will
be proportionally reduced by a factor αk ∈ [0, 1] (recall the assumption (2)). Thus, it is
natural to admit that in this marginal situation the producer can work with a reduced
technological set αkUk. The particular value of αk depends on the individual history of
successes and failures for this producer.

If the revenue of a consumer is zero, then again, there is no special reason to allocate
all the budget τi to this expensive market. The consumer can decide to spend here only a
part of it, namely βiτi with some βi ∈ [0, 1], which is sufficient to cover the pattern βiσi for
the consumption of qualities (this does not change the zero level of the excessive revenue).
The remaining part (1− βi)τi of the budget can be used then at another markets. Again,
the appropriate value of this coefficient can be found by some adjustment processes. We
will see later, that the presence of these coefficients is often necessary for balancing the
production and consumption volumes on the market.

Fractional value of the participation level can be seen as an indication (and measure)
of poverty. Note that this can happen both with producers and consumers.

The participation levels of the agents can be included directly in definitions of the
excessive revenues:

EPRk(π) = (PRk(π))+ = max
αk∈[0,1]

[αkPRk(π)] ,

ECRi(π) = (CRi(π))+ = max
βi∈[0,1]

[βiCRi(π)] .

In particular, if αk ∈ [0, 1] is the participation level of k-th producer, then

αkPRk(π) = max
ũk∈αkUk

[〈p− ck, ũk〉 − 〈y, Rkũk〉 − 〈p, Akũk〉 − αkκk(Uk)] .

Thus, the actual participation ũk ≡ ũk(αk) of the producer in the market activity is only
an αk-fraction of its maximal production abilities: ũk = αku

∗
k with some u∗k ∈ U∗k .

Similarly, let βi ∈ [0, 1] be participation level of i-th consumer. Then, he satisfies just
a βi-fraction of his desired life standards σi by spending the corresponding part of the
budget τi:

βiCRi(π) = max
ṽi∈βiVi

[βiτi − 〈p, ṽi〉] .

Thus, the actual consumption pattern of ith consumer at this market is ṽi = ṽi(βi) = βiv
∗
i

with some v∗i ∈ V∗i .
Now we can give a formal definition of proper participation levels.

Definition 1 For a given system of prices π = (p, y) ∈ Rn+r
+ and a system of tentative

market flows

F0 =
({

u0
k

}K

k=1
,
{
v0
i

}L

i=1

)
∈ Ω def=

K∏

k=1

Uk ×
L∏

i=1

Vi,
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the system of participation levels γ =
(
{αk}K

k=1 , {βi}L
i=1

)
∈ [0, 1]K+L is called proper

(with respect to π and F0) if it satisfies the following conditions:

αk =
{

1, if 〈p− ck −RT
k y −AT

k p, u0
k〉 > κk(Uk),

0, if 〈p− ck −RT
k y −AT

k p, u0
k〉 < κk(Uk),

βi =
{

1, if 〈p, v0
i 〉 < τi,

0, if 〈p, v0
i 〉 > τi.

Such a triple (π, F0, γ) defines a real market flow Fr =
({

αku
0
k

}K

k=1
,
{
βiv

0
i

}L

i=1

)
. 2

Now we can define the equilibrium market flows. Let Fr =
(
{ũk}K

k=1 , {ṽi}L
i=1

)
be a

real market flow defined by some triple (π, F0, γ). We define two balancing conditions.

(B1) The market of goods is balanced. Namely, the consumption volumes never
exceed the volumes of production, and the market of goods with positive prices
(p(j) > 0) are perfectly balanced:

K∑

k=1

ũ
(j)
k =

K∑

k=1

(Akũk)
(j) +

L∑

i=1

ṽ
(j)
i .

The left-hand side of this equation represents the production volume of j-th good.
Its right-hand side accounts the producers’ supplies employed for the production,
and the consumption volumes.

(B2) The market of resources is balanced. This means that the external resources
used for production never exceed their limiting bounds. Moreover, the market of
resources with positive prices (y(j) > 0) is balanced:

K∑

k=1

(Rkũk)
(j) = b(j).

The left-hand side of this equation aggregates the needs of producers in j-th resource.
The right-hand side represents the upper limits for corresponding resources.

Definition 2 We say that the set π ∈ Rn+r
+ is the set of equilibrium prices if there exists

a tentative flow

F ∗ ∈ Ω∗(π) def=
K∏

k=1

U∗k (π)×
L∏

i=1

V∗i (π)

and a proper system of participation levels γ such that the corresponding real market flow
F ∗

r satisfies the balancing conditions (B1) and (B2).
In this case F ∗

r is called the equilibrium market flow. 2
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3 Existence and characterization theorems

At equilibrium, the characteristic behavior of producers and consumers is very simple: all
of them are trying to maximize their revenues (see (4) and (7)). At the same time, the
origin of equilibrium prices is not so evident1. For its characterization, let us introduce
the notion of Total Excessive Revenue of the market, which is just the sum of excessive
revenues of all agents:

TER(π) def=
K∑

k=1

EPRk(π) +
L∑

i=1
ECRi(π) + 〈b, y〉

=
K∑

k=1

max
uk∈Uk

(〈p− ck −RT
k y −AT

k p, uk〉 − κk

)
+

+
L∑

i=1
max
vi∈Vi

(τi − 〈p, vi〉)+ + 〈b, y〉.

(8)

In this expression, 〈b, y〉 is the cost of all available external resources. It represents the
revenue of the external providers. Note that function TER(·) is convex since it is a sum
of convex functions.

Theorem 1 The set π∗ = (p∗, y∗) ∈ Rn+r
+ is the set of equilibrium prices if and only if it

solves the following convex minimization problem:

min
π∈Rn+r

+

TER(π). (9)

Proof:
1. Assume that the set π∗ = (p∗, y∗) is formed by equilibrium prices. Then, in view of
Definition 2, there exist a tentative flow F∗ =

(
{u∗k}K

k=1 , {v∗i }L
i=1

)
∈ Ω∗(π∗), and a proper

participation level γ∗ =
(
{α∗k}K

k=1 , {β∗i }L
i=1

)
, such that the real market flow

F ∗
r =

(
{ũk = α∗ku

∗
k}K

k=1 , {ṽi = β∗i v∗i }L
i=1

)
,

satisfies the conditions (B1) and (B2).
Denote ξ∗p =

∑K
k=1 (ũk −Akũk) −

∑L
i=1 ṽi, and ξ∗y = b − ∑K

k=1 Rkũk. Due to the

balances for goods and resources (B1)-(B2), vector ξ∗ def=
(
ξ∗p , ξ∗y

)
has non-negative com-

ponents. Moreover, the components of this vector, which correspond to the positive prices,
are equal to zero. Hence, for all π = (p, y) ≥ 0 we have 〈ξ∗, π − π∗〉 ≥ 0. Further, in view
of (4) and (7), ξ∗ ∈ ∂TER (π∗). Since TER is convex in π, for all π = (p, y) ≥ 0 we have:

TER(π)− TER (π∗) ≥ 〈ξ∗, π − π∗〉 ≥ 0.

Thus, π∗ minimizes the Total Excessive Revenue.

1Remember the famous “invisible hand” of the market by Adam Smith.
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2. Assume that the set of prices π∗ = (p∗, y∗) ≥ 0 is optimal for problem (9). Then there
exists ξ∗ ∈ ∂TER(π∗) such that

〈ξ∗, π − π∗〉 ≥ 0, ∀π ≥ 0.

Considering π = 0 and π = 2π∗, we conclude that 〈ξ∗, π∗〉 = 0. Consequently, ξ∗ ≥ 0.
Moreover,

π
(j)
∗ = 0 ⇒ ξ∗(j) ≥ 0,

π
(j)
∗ > 0 ⇒ ξ∗(j) = 0.

It remains to note that in view of representations (4) and (7) we have ξ∗ = (ξ∗p , ξ∗y) with

ξ∗p =
K∑

k=1

α∗k (u∗k −Aku
∗
k)−

L∑
i=1

β∗i vi,

ξ∗y = b−
K∑

k=1

α∗kRku
∗
k,

where u∗k ∈ U∗k , k = 1, . . . , K, v∗k ∈ V∗i , i = 1, . . . , L, and the system of participation
levels γ∗ =

({α∗k}K
k=1, {β∗i }L

i=1

) ∈ [0, 1]K+L is proper for π∗ and the tentative flow F∗ =(
{u∗k}K

k=1 , {v∗i }L
i=1

)
. Therefore, the conditions (B1) and (B2) are satisfied by the real

market flow F ∗
r =

({α∗ku∗k}K
k=1, {β∗i v∗i }L

i=1

)
. Hence, the set π∗ is formed by equilibrium

prices. 2

Let us present some conditions for existence of an equilibrium in the market.

Definition 3 A market is called productive if there exist subsets of producers K ⊂
{1, . . . , K} and consumers L ⊂ {1, . . . , L}, such that the corresponding production and
consumption flows ({ūk}k∈K , {v̄i}i∈L

) ∈
∏

k∈K
Uk ×

∏

i∈L
Vi

establish positive balances for production of goods and consumption of external resources:
∑

k∈K
ūk >

∑

k∈K
Akūk +

∑

i∈L
v̄i,

b >
∑

k∈K
Rkūk.

(10)

Theorem 2 At the productive markets, the level sets of function TER(·) are bounded.
This implies existence of equilibrium prices.

Proof:

10



Denote ξ̄p =
∑
k∈K

ūk −
∑
k∈K

Akūk −
∑
i∈L

v̄i, and ξ̄y = b−∑
k∈KRkūk. For all π = (p, y) ≥ 0

we have

TER(π) =
K∑

k=1

[PRk(π)]+ +
L∑

i=1
[CRi(π)]+ + 〈y, b〉

≥ ∑
k∈K

[PRk(π)]+ +
∑
i∈L

[CRi(π)]+ + 〈y, b〉

≥ ∑
k∈K PRk(π) +

∑
i∈LCRi(π) + 〈y, b〉

≥ ∑
k∈K

(〈p, ūk〉 − 〈y, Rkūk〉 − 〈p, Akūk〉 − κk) +
∑
i∈L

(τi − 〈p, v̄i〉) + 〈y, b〉

= − ∑
k∈K

(κk + 〈ck, ūk〉) +
∑
i∈L

τi +
〈(

ξ̄p, ξ̄y

)
, π

〉
.

Since
(
ξ̄p, ξ̄y

)
> 0, the intersection of the level sets of function TER with Rn+r

+ is bounded.
Hence, problem (9) is solvable. Thus, the existence of equilibrium prices follows from
Theorem 1. 2

Remark 1 Note that condition (10) coincides with the standard productivity condition
in Leontief ’s input-output economic model of a closed economy system (see [10]) only if
Ak = A for all k ∈ K. In any case, our condition is applicable to a more general situation.

Remark 2 If all technological sets Uk are defined by (5), then the function TER(·) is
piece-wise linear. In this case, since it is nonnegative, the optimal set of problem (9)
is nonempty. However, for its boundedness we still need to assume productivity of the
market.

We need to introduce also some additional assumptions in order to guarantee that
our market indeed works. Namely, we need to ensure that the optimal solution π∗ of the
problem (9) in not at the origin. For that, we introduce the following condition rejecting
the Zero-Cost Production (ZCP):

If αkκk + 〈ck, uk〉 = 0 with uk ∈ αkUk and αk ∈ [0, 1], then uk = 0. (11)

This condition is automatically satisfied for κk > 0. If κk = 0, then (11) implies that for
the kth producer there is no nonzero production plan with zero production cost. Recall
that

EPRk(π) = max
αk,uk

[〈p− ck −RT
k y −AT

k p, uk〉 − αkκk : αk ∈ [0, 1], uk ∈ αkUk].

Therefore, condition (11) implies that ∂EPRk(0) = {0}.
Assume now that the income τi of ith consumer is positive. Since

ECRi(π) = max
βi,vi

[βiτi − 〈p, vi〉 : βi ∈ [0, 1], vi ∈ βiVi],

we conclude that ∂ECRi(0) = (−Vi, 0). Thus, we have proved the following statement.

11



Lemma 1 Let all producers satisfy ZCP-condition, and the incomes of all consumers are
positive. Then

∂TER(0) =
(
−

L∑
i=1

Vi, b

)
. (12)

Corollary 1 Existence of a consumer with nonzero life standard is sufficient for having
π∗ 6= 0.

Proof:
Indeed, assume that π∗ = 0. In view of the first-order optimality conditions, there exists
ξ∗ ∈ ∂TER(0) such that

〈ξ∗, π〉 ≥ 0 ∀π ≥ 0.

Hence, ξ∗ = (−
L∑

i=1
v∗i , b) ≥ 0 for some v∗i ∈ Vi. Therefore, all v∗i = 0, implying zero life

standards for all consumers. 2

It is interesting that the last statement is formulated only in terms of consumption
standards. This confirms the primary role of demand in generating supply.

4 Properties of equilibrium market flows

Let us present a welfare theorem for equilibrium market flow (compare with welfare the-
orem for Walrasian equilibrium, see [2]). We are going to prove that any equilibrium
market flow is Pareto optimal. This means that no consumers or producers can improve
his gain (excessive revenue) without worsening the gain of some others. Let us start from
the definition of feasible market flows.

Definition 4 The real market flow is called feasible if it satisfies the balancing conditions
(B1) and (B2). 2

Definition 5 A feasible market flow F∗, defined by the triple
(
π∗ = (p∗, y∗), F ∗

0 =
({

u0
k

}K

k=1
,
{
v0
i

}L

i=1

)
, γ∗

)
,

is called Pareto optimal if there is no feasible market flow F̂ defined by another triple
(
π̂ = (p̂, ŷ), F̂0 =

(
{ûk}K

k=1 , {v̂i}L
i=1

)
, γ̂

)

such that all inequalities

(〈p̂− ck −RT
k ŷ −AT

k p̂, ûk〉 − κk)+ ≥ (〈p∗ − ck −RT
k y∗ −AT

k p∗, u0
k〉 − κk)+,

k = 1 . . . K,

(τi − 〈p̂, v̂i〉)+ ≥ (τi − 〈p∗, v0
i 〉)+, i = 1 . . . L,

〈b, ŷ〉 ≥ 〈b, y∗〉,

(13)
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are satisfied, and one of them is strict.

Note that we define Pareto optimality with respect to excessive revenues. In our model
they play a role of objective functions of the agents.

Theorem 3 Any equilibrium market flow is Pareto optimal.

Proof:
Using notation of Definition 5 assume that the set π∗ is formed by equilibrium prices, and
F∗ is the corresponding equilibrium market flow. Assume that the inequalities (13) are
all valid for some feasible market flow F̂ defined by the triple (π̂, F̂0, γ̂). And let at least
one of these inequalities be strict. For π = (p, y) ∈ Rn+r and F ∈ Ω, define the function

ϕ(π, F ) =
K∑

k=1

(〈p− ck −RT
k y −AT

k p, uk〉 − κk)+ +
L∑

i=1

(τi − 〈p, vi〉)+ + 〈b, y〉.

In view of our assumption, ϕ(π̂, F̂0) > ϕ(π∗, F∗). Since π∗ is the set of equilibrium
prices, in view of Theorem 1 and definitions (4), (7) we have:

ϕ(π∗, F∗) = min
π≥0

max
F∈Ω

ϕ(π, F ) = max
F∈Ω

min
π≥0

ϕ(π, F ) ≥ min
π≥0

ϕ(π, F̂0).

It remains to note that the balancing conditions (B1) and (B2) for the flow F̂ are exactly
the necessary and sufficient characterization of point π̂ as the optimal solution to the
latter minimization problem. Therefore, ϕ(π∗, F∗) ≥ ϕ(π̂, F̂0). This is a contradiction. 2

In view of Theorem 1, equilibrium prices minimize the total excessive revenue. Let us
prove a very intuitive result that its optimal value is equal to the difference of the sum of
the real budgets of consumers and the sum of the real expenses of producers.

Theorem 4 Let π∗ = (p∗, y∗) be the equilibrium system of prices, supported by the tenta-
tive flow F ∗

0 and a proper system of participation levels γ∗ =
(
{α∗k}K

k=1 , {β∗i }L
i=1

)
. Then

TER(π∗) =
L∑

i=1
β∗i τi −

K∑
k=1

α∗k(κk + 〈ck, u
∗
k〉) ≥ 〈b, y∗〉.

Proof:

13



Denote by F ∗
0 =

(
{u∗k}K

k=1 , {v∗i }L
i=1

)
the tentative flow pattern. Then

TER(π∗) =
K∑

k=1

(〈p∗ − ck, u
∗
k〉 − 〈y∗, Rku

∗
k〉 − 〈p∗, Aku

∗
k〉 − κk)+

+
L∑

i=1
(τi − 〈p∗, v∗i 〉)+ + 〈b, y∗〉

=
K∑

k=1

α∗k (〈p∗ − ck, u
∗
k〉 − 〈y∗, Rku

∗
k〉 − 〈p∗, Aku

∗
k〉 − κk)

+
L∑

i=1
β∗i (τi − 〈p∗, v∗i 〉) + 〈b, y∗〉

=
〈

p∗,
K∑

k=1

α∗k(u
∗
k −Aku

∗
k)−

L∑
i=1

β∗i v∗i

〉
+

〈
y∗, b−

K∑
k=1

α∗kRku
∗
k

〉

−
K∑

k=1

α∗k(κk + 〈ck, u
∗
k〉) +

L∑
i=1

β∗i τ∗i + 〈b, y∗〉.

In view of balancing equations (B1) and (B2), we have
〈

p∗,
K∑

k=1

α∗k(u
∗
k −Aku

∗
k)−

L∑
i=1

β∗i v∗i

〉
= 0,

〈
y∗, b−

K∑
k=1

α∗kRku
∗
k

〉
= 0.

This gives us the desired expression for optimal value of TER. It is nonnegative since all
terms in its definition (8) are nonnegative. 2

Note that the nonnegative value

TER(π∗)− 〈b, y∗〉 =
L∑

i=1
β∗i τi −

K∑
k=1

α∗k(κk + 〈ck, u
∗
k〉)− 〈b, y∗〉 (14)

represents the total rate of accumulation of the capital within the internal market. In
general, equilibrium prices, market flows, and participation levels are not unique. Nev-
ertheless, all of them ensure the same value of TER∗ def= TER(π∗). We call it the total
excessive revenue of the market.

Depending on participation level of the agents, we distinguish three categories:

• successful agents with participation level one,

• bankrupted agents with participation level zero,

• marginal agents with participation level between zero and one.

Let us explain the role of marginal agents in the capitalistic economy. First of all, note that
marginal agents reach their breaking point, where they make neither a profit nor a loss.
For a marginal producer it means that his return is equals to the fixed cost of production.
Net saving of a marginal consumer is zero, i.e. his budget is equal to the minimal possible
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expenditure. Since these agents do not get any positive gain from participation in the
market, they can try different levels of market activity. The corresponding strategy of
trials and errors finally results in balancing the whole market in the sense of conditions
(B1) and (B2). Note that at equilibrium, the consumer spends in average only a fraction
of his budget on the market, which covers only a part of his actual needs. The remaining
part can be used at alternative markets, which are not included in our model. Such a
behavior is typical for poor people, and we can treat the fractional participation coefficient
as a measure of poverty. Thus, the marginal agents play a crucial role in our approach to
market modelling.

Finally, let us describe for our model the structure of the aggregate supply/demand
functions. For π = (p, y) ∈ Rn+r we have

TER(π) =
K∑

k=1

EPRk(π) +
L∑

i=1

ECRi(π) + 〈b, y〉,

where

EPRk(π) = (PRk(π))+ = (PBk(π)− κk)+

= max
uk∈Uk

(〈p− ck −RT
k y −AT

k p, uk〉 − κk

)
+

,

ECRi(π) = [CRi(π)]+ = [τi − CEi(π)]+ = max
vi∈Vi

(τi − 〈p, vi〉)+ .

The aggregate supply/demand function is defined by subdifferentials of EPRk of the
producers. It is a multivalued mapping S : Rn+r

+ → 2R
n+r

of the following form:

S(π) =
∑K

k=1

{
αk(uk −Akuk,−Rkuk) : uk ∈ U∗k (π),

αk ∈ [0, 1], αk =
{

1, if PRk(π) > 0,
0, if PRk(π) < 0.

}
.

(15)

In this definition, uk is the tentative production volume of k-th producer, αk is his partic-
ipation level, and αkuk is his real production. Note that the producers also require some
resources. This explains the presence of the terms with negative signs in (15).

The aggregate demand function is defined by subdifferentials of ECRi of consumers,
taking with the negative sign. It is a multivalued mapping D : Rn+r

+ → 2R
n+r

defined as

D(π) =
L∑

i=1

{
(βivi, 0) : vi ∈ V∗i (π), βi ∈ [0, 1], βi =

{
1, if CRi(π) > 0,
0, if CRi(π) < 0

}
. (16)

Again, in this definition vi is the tentative consumption volume of i-th consumer, βi is his
participation level, and βivi is the real consumption. Now we can write down expression
for the full subdifferential of TER:

∂TER(π) = S(π)−D(π) + (0, b)T , π ≥ 0. (17)

Note that all terms in the definition (16) have the same sign. This is because the
current version of our model has only pure consumers. In Section 5, we will allow the
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consumers to work. Then they become also the producers of the labor. In this case, the
definition of the demand function must include also the mixed terms.

Note that all functions EPRk and ECRi are convex in π. Therefore, in a full cor-
respondence with the common sense, the multivalued supply/demand mapping S is an
“increasing function” of price π (a monotone operator, e.g. [16]). On the other hand, the
multivalued demand mapping D is a “decreasing function” of the price (an antimono-
tone operator). As in the classical microeconomic theory (e.g., [9]), in our model the
equilibrium price π∗ equalizes the aggregate supply and demand:

[S(π∗) + (0, b)T ]
⋂

D(π∗) 6= ∅. (18)

(For the sake of simplicity we assume here that all equilibrium prices are positive.) In
view of Theorem 1, the equilibrium prices are exactly the minimizers of the total excessive
revenue TER. Since this function is convex in π, condition (18) is equivalent to the usual
first-order optimality condition

0 ∈ ∂TER(π∗). (19)

Let us show by a simple example that our concepts lead to intuitively correct equilib-
rium solutions.

Example 1 Consider a “market” with single producer and single consumer. Producer
is able to produce two different products, containing some useful substance, say sugar, in
quantities q1 and q2 per unit of weight. Consumer is going to eat at least σ units of sugar
per week. Producer controls two factories with maximal production volumes ū1 and ū2 per
week such that

q1ū1 < σ < q1ū1 + q2ū2. (20)

And let the production cost c1 and c2 for these products satisfy inequality c1
q1

< c2
q2

. Assume
that the weekly consumer budget is big enough: τ > c2

q2
σ. What is the equilibrium solution

for this market?
In accordance to our model, we define excessive revenue of producer (see (4)) as follows:

EPR(p) = max
0≤u1≤ū1
0≤u2≤ū2

((p1 − c1)u1 + (p2 − c2)u2)+ = ū1 · (p1 − c1)+ + ū2 · (p2 − c2)+.

At the same time, the excessive revenue of consumer (7) is defined as

ECR(p) = max
v1,v2≥0

{
(τ − v1p1 − v2p2)+ : q1v1 + q2v2 ≥ σ

}

=
(
τ − σ min

{
p1

q1
, p2

q2

})
+

.

Let us show that the equilibrium prices are defined as

p∗1 = q1

q2
c2 > c1, p∗2 = c2.

Indeed, in this situation S(p∗) = ū1e1 + [0, ū2]e2, and D(p∗) =
[

σ
q1

e1,
σ
q2

e2

]
. Hence,

condition (18) is satisfied in view of relations (20). The equilibrium price p∗ is unique
since 0 ∈ int (S(p∗)−D(p∗)). 2
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5 Simple extension: working customers

The excessive revenue model described in Section 2 can be easily extended in order to
capture various additional features of the market. In this section we illustrate this by
introducing in our model the labor market.

For producers, the production cost includes now the cost of the labor, which is used for
computing the salaries of workers. Assume that there exist m different professional skills
of the workers. The corresponding vector of their unitary labor prices (e.g., on hourly
basis) is z ∈ Rm

+ . For simplicity, we assume that all producers at the market apply the
same labor prices. However, these prices are not fixed. They are finally determined by
the market conditions (same as the external product prices y ∈ Rr

+).
The technological labor matrix of k-th producer Lk ∈ Rm×n describes the necessary

amounts of labor in this particular production environment. Namely, the column Lkej ∈
Rm represents the amounts of working hours of all professions, which are necessary for
producing single units of jth product. Thus, the total remuneration paid by the k-th
producer for the production plan uk ∈ Uk is 〈z, Lkuk〉.

Hence, for the market with labor, we need to extend our system of prices:

π
def= (p, y, z) ∈ Rn+r+m.

All definitions are modified now in a natural way:

PBk(π) = max
uk∈Uk

[ 〈p− ck, uk〉 − 〈y,Rkuk〉 − 〈p,Akuk〉 − 〈z, Lkuk〉 ] ,

U∗k (π) = arg max
uk∈Uk

[ 〈p, uk〉 − 〈y,Rkuk〉 − 〈p,Akuk〉 − 〈z, Lkuk〉 ] ,

PRk(π) = PBk(π)− κk,

EPRk(π) = ( PRk(π) )+ .

(21)

We assume that each consumer can increase his regular income by accepting a job. For
that, i-th consumer has to decide on distribution ti ∈ Rm

+ of his total working time θi ∈ R+

among m different jobs. Thus, the feasible set for time distribution of ith consumer looks
as follows

Ti
def=

{
ti ∈ Rm

+ :
m∑

j=1
t
(j)
i ≤ θi

}
.

Note that ith consumer may have professional training for several jobs. Denoting by s
(j)
i

his productivity in performing job j, j = 1, . . . , m, (it can happen that some of these
values are zeros), we introduce diagonal matrix Si = diag

(
s
(1)
i , . . . , s

(m)
i

)
∈ Rm×m. Now,

for a feasible time distribution ti ∈ Ti, the salary of this consumer can be computed as
〈z, Siti〉.

In order to compute the optimal time distribution, i-th consumer maximizes his salary.
Thus, he solves the problem

Wi(z) def= max
ti∈Ti

〈z, Siti〉, T ∗i def= Argmax
ti∈Ti

〈z, Siti〉.
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This income modifies the revenue of i-th consumer:

CRi(π) = τi + Wi(z)− CEi(π)

= τi + max
ti∈Ti

〈z, Siti〉+ max
vi∈Vi

(−〈p, vi〉).

As before, his excessive revenue is defined as ECRi(π) = (CRi(π))+.
Similar to the market with goods and resources, we can give now an adapted definition

of proper participation levels and real market flows (compare with Definition 1). In the
new definition, the time distributions play the same role as the production volumes.

Definition 6 For a given system of prices and salaries π = (p, y, z) ∈ Rn+r+m
+ and a

system of tentative market flows

F0 =
({

u0
k

}K

k=1
,
{
v0
i

}L

i=1
,
{
t0i

}L

i=1

)
∈ Ω def=

K∏

k=1

Uk ×
L∏

i=1

Vi ×
L∏

i=1

Ti,

the system of participation levels γ =
(
{αk}K

k=1 , {βi}L
i=1

)
∈ [0, 1]K+L is called proper

(with respect to π and F0) if it satisfies the following conditions:

αk =
{

1, if 〈p− ck −RT
k y −AT

k p− LT
k z, u0

k〉 > κk(Uk),
0, if 〈p− ck −RT

k y −AT
k p− LT

k z, u0
k〉 < κk(Uk),

βi =
{

1, if 〈p, v0
i 〉 < τi + 〈z, Siti〉,

0, if 〈p, v0
i 〉 > τi + 〈z, Siti〉.

Such a triple (π, F0, γ) defines a real market flow Fr =
({

αku
0
k

}K

k=1
,
{
βiv

0
i

}L

i=1
,
{
βit

0
i

}L

i=1

)
.

2

Now we can define the equilibrium market flows. Let Fr =
(
{ũk}K

k=1 , {ṽi}L
i=1 ,

{
t̃i

}L

i=1

)

be a real market flow defined by some triple (π, F0, γ). We need one more balancing
condition.

(B3) The market of labor is balanced. This means that the amount of labor needed for
fulfilling the real production plans does not exceed its available amount. Moreover,
the labor markets for jobs with positives salaries (z(j) > 0) clear:

K∑

k=1

(Lkũk)
(j) =

L∑

i=1

(
Sit̃i

)(j)
.

The left-hand side of this equation corresponds to the amount of j-th labor required
by producers. The right-hand side represents its real amount provided by the work-
ers.
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Definition 7 We say that the set π ∈ Rn+r+m
+ is the set of equilibrium prices if there

exists a tentative flow

F ∗ ∈ Ω∗(π) def=
K∏

k=1

U∗k (π)×
L∏

i=1

V∗i (π)×
L∏

i=1

T ∗i (π)

and a proper system of participation levels γ such that the corresponding real market flow
F ∗

r satisfies the balancing conditions (B1), (B2), and (B3).
In this case F ∗

r is called the equilibrium market flow. 2

At equilibrium, all producers and consumers tend to maximize their revenues. We
define the total excessive revenue of the market with labor by summing up the excessive
revenues of all agents:

TER(π) :=
K∑

k=1

EPRk(π) +
L∑

i=1

ECRi(π) + 〈y, b〉.

At the same time, we can prove the statement similar to Theorem 1.

Theorem 5 The set π∗ = (p∗, y∗, z∗) ∈ Rn+r+m
+ is the set of equilibrium prices if and

only if it solves the following minimization problem: min
π∈Rn+r+m

TER(π).

The proof of this theorem is almost identical to the proof of Theorem 1.
In this section we have shown how we can enrich our model by additional elements,

representing some economical relations between different agents. This can be done for
many different types of goods trading at the market. The required structural changes
are always the same. Namely, some agents introduce a new good with unknown price.
Its production needs some expenditures, which reduce the excessive revenues of these
agents. However, the new good can be sold at the market and the gain will increase the
corresponding revenues. Similarly, we need to modify the excessive revenues of potential
consumers of the new good. The equilibrium market price of the new good can be defined
by minimizing the total excessive revenue of the market. Note that the whole structure
of such market relations can be very complicated since the same agents can be producers
of one good and consumers for another one. However, in many situations the existence
theorems are trivial since they can be justified by the same arguments as in Theorem 1.

6 Consumption strategies

In the previous sections we assumed that the consumer chooses his regular consumption
pattern as a solution of the following optimization problem:

min
v∈Rn

+

{〈p, v〉 : Qv ≥ σ} , (22)

where p is the vector of product prices. In the real life, dimension of this problem is
usually very big. It seems impossible that a normal consumer can approach somehow its
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solution without being involved in very heavy computations. Fortunately, this impression
is wrong. In order to understand this, let us look at the dual form of problem (22).

min
v∈Rn

+

{〈p, v〉 : Qv ≥ σ} = min
v∈Rn

+

max
λ∈Rd

+

{〈p, v〉+ 〈λ, σ −Qv〉}

= max
λ∈Rd

+

min
v∈Rn

+

{〈λ, σ〉+ 〈p−QT λ, v〉}

= max
λ∈Rd

+

{〈σ, λ〉 : QT λ ≤ p
}

.

Thus, the problem dual to (22) is as follows:

max
λ∈Rd

+

{〈σ, λ〉 : 〈qj , λ〉 ≤ p(j), j = 1, . . . , n
}

, (23)

where qj = Qej . In this problem, the elements λ(i) can be interpreted as personal prices
for corresponding qualities, i = 1, . . . , d. Thus, the value 〈qj , λ〉 is the personal estimate
of the quality of jth product. Let us introduce now the function

ψ(λ) = max
1≤j≤n

〈qj ,λ〉
p(j) . (24)

This function selects the products with the best quality/price ratio. Of course, the results
of selection depend on our current prices for qualities.

Let us rewrite the dual problem (23) using the function ψ.

max
λ∈Rd

+

{〈σ, λ〉 : ψ(λ) ≤ 1} = max
λ∈Rd

+

〈σ,λ〉
ψ(λ) =

[
min
λ∈Rd

+

{ψ(λ) : 〈σ, λ〉 = 1}
]−1

.

We are going to show that our consumer is able to approach the optimal solution of
problem

min
λ
{ψ(λ) : λ ∈ ∆d(σ)} , ∆d(σ) def=

{
λ ∈ Rd

+ : 〈σ, λ〉 = 1
}

, (25)

by implementing the standard consumption cycle (1).
For simplicity, let us assume that for each shopping we have the same budget h > 0.

During our consumption history, we update the vector of accumulated qualities sk ∈ Rd,
and the vector of cumulative product consumption vk ∈ Rn.

Clearly, s0 = 0 and v̂0 = 0. Before starting the kth shopping, we have already in mind
some prices for qualities λk. It is convenient to normalize them by inclusion λk ∈ ∆d(σ),
which means that the total budget for our life standards is equal to one.

During the kth shopping, we subconsciously determine the set of products with the
best quality/price ratio:

I∗(λk) =
{

j : 〈qj ,λk〉
p(j) = ψ(λk)

}
.

If this set contains more than one element, we need to define the sharing vector xk ∈ ∆n(e),
such that x

(j)
k = 0 for all j 6∈ I∗(λk). Then, the budget for buying jth product for
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j ∈ I∗(λk) becomes hx
(j)
k , and we buy hx

(j)
k

p(j) quantity of this product. Thus, the vector of
accumulated qualities is updated as follows:

sk+1 = sk + hgk, gk =
n∑

j=1

x
(j)
k

p(j) qj . (26)

It is important, that gk ∈ ∂ψ(λk). Note that 〈gk, λk〉 = ψ(λk).
The vector of accumulated product consumption is updated as

v̂
(j)
k+1 = v̂

(j)
k + h

x
(j)
k

p(j) , j = 1, . . . , n. (27)

Note that these updates maintain the following relations:

v̂k ≥ 0, sk = Qv̂k, k ≥ 0. (28)

Let us look now at the gap bound

δk = h max
λ∈∆d(σ)

k∑
i=0
〈gi, λi − λ〉. (29)

Note that

δk = h
k∑

i=0
ψ(λi)− min

λ∈∆d(σ)
h

k∑
i=0
〈gi, λ〉 = h

k∑
i=0

ψ(λi)− min
λ∈∆d(σ)

〈sk+1, λ〉

= h
k∑

i=0
ψ(λi)− min

1≤j≤d

s
(j)
k+1

σ(j) .

Let us writer down a problem dual to (25)

min
λ
{ψ(λ) : λ ∈ ∆d(σ)} = min

λ∈Rd
+

max
µ∈R,

w∈∆n(e)

{
n∑

j=1
w(j) 〈qj ,λ〉

p(j) + µ(1− 〈σ, λ〉)
}

= max
µ∈R,

w∈∆n(e)

min
λ∈Rd

+

{
〈

n∑
j=1

w(j) qj

p(j) − µσ, λ〉+ µ

}

(ṽ(j) def= w(j)/p(j)) = max
µ∈R,ṽ

{µ : Qṽ ≥ µσ, ṽ ∈ ∆n(p)}

= max
s,ṽ

{
min

1≤j≤d

s(j)

σ(j) : s = Qṽ, ṽ ∈ ∆n(p)
}

Thus, the problem dual to (25) has the following form

max
s,ṽ

{
min

1≤j≤d

s(j)

σ(j) : s = Qṽ, ṽ ∈ Rn
+, 〈p, ṽ〉 = 1

}
. (30)

It is interesting that this problem belongs to the class of models suggested by Lancaster [9]
with concave utility function

C(v) def= min
1≤j≤d

1
σ(j) 〈Qv, ej〉. (31)
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However, in our framework this problem can be used only for finding the product structure
of optimal consumption. The consumption volumes must be found from problem (22).

Denote Sk = (k+1)h, the total budget for the first k+1 shoppings. Then by induction

it is easy to see that 〈p, v̂k+1〉 (27)
= Sk. Defining now

ψ̃k+1 = 1
k+1

k∑
i=0

ψ(λi), s̃k+1 = 1
Sk

sk+1, ṽk+1 = 1
Sk

v̂k+1,

we can see that ṽk+1 ∈ ∆n(p). Therefore

1
Sk

δk = ψ̃k+1 − C(ṽk+1) ≥ 0. (32)

Thus, our goal is to present a behavioral strategy for updating the personal prices λk,
which ensure 1

Sk
δk → 0 as k →∞.

For that, we need to introduce new variables ξ(j) = 1
σ(j) λ

(j), j = 1, . . . , d. If λ ∈ ∆d(σ),
then ξ ∈ ∆d(e). Thus, the new objects have interpretation of probabilities, or frequencies.

The value ξ
(j)
k has a sense of relative importance of quality j for the consumer after

k iterations of the consumption process. We start from uniform distribution ξ0 = 1
de ∈

∆d(e). For the next iterations, we apply the following rule:

ξ
(j)
k+1 =

exp

(
− s̃

(j)
k+1

µk+1σ(j)

)

d∑
i=1

exp

(
− s̃

(i)
k+1

µk+1σ(i)

) , j = 1, . . . , d. (33)

This is a standard Logit model for detecting the maximal deficiency in the average level
of consumption of qualities. It has a deviation parameter µk > 0 and can be explained as
follows.

Between two successive shoppings, we are trying to determine the most deficient quality
in our consumption history. For that, we regularly perform subconscious inspections of
the average level of their consumption. Since this a subconscious estimating process, its
results are random. However, it is natural to assume that

the relative importance of each quality approaches the frequency of detecting its
average consumption as the lowest one as compared to the standards of life.

These estimates, divided by the corresponding scale coefficients σ(j) become the prices of
qualities for the next shopping.

All these computations are done, of course, subconsciously, without any visible efforts
from the consumer. Similarly, we assume that our consumer can easily detect products
with the best quality-price ratio, which are understood as products with faire prices.

It can be proved that with an appropriate strategy of tightening, (e.g. µk ≈ 1√
k+1

),

the prices for qualities λ
(j)
k = ξ

(j)
k /σ(j) defined by (33) converge to the optimal solution of

problem (25) (see Appendix). At the same time, the consumption volumes ṽk converge to
the optimal solution of the dual problem in (30). Thus, our consumer is able to approach
the optimal structure of the product consumption. Playing now with the budget h, it is
possible to ensure the necessary level σ for consumption of qualities.
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7 Price dynamics

One of the most important questions within the scope of general equilibrium theory is the
description of price dynamics, which should result in equilibrium prices. Usually, for that
we need to relate somehow the variation of prices π(t) ≥ 0 in time t ∈ R with the excess
supply z̄(t), which is the difference between the aggregate supply ū(t) and demand v̄(t),
computed for the current system of prices. One of the most straightforward suggestions is
the classical tâtonnement process going back to Walras (e.g., [3]). It consists in postulating
the following dynamics

π′(t) = −γz̄(t), (34)

where γ is an appropriate coefficient. However, this very intuitive equation has two
shortcomings. Firstly, it is not clear why the entries of the trajectory π(t) never become
negative. Secondly, the structure of limiting points of π(t) can be very complicated. If
we assume that the excess supply z̄(t) is computed from Arrow-Debreu model, then π(t)
can have multiple number of isolated attraction points, [6]. Thus, we have uncertainty in
predicting the final state of the price system.

In our model, the excess supply z̄(t) is defined as follows:

z̄(t) = ū(t)− v̄(t) + (0, b)T , ū(t) ∈ S(π(t)), v̄(t) ∈ D(π(t)) (35)

(see (15), (16)). With this definition, equation (34) becomes potential since z̄(t) ∈
∂TER(π(t)) (see (17)). Therefore, it can have only a single limiting point which mini-
mizes the total excessive revenue TER, hence, constituting a set of equilibrium prices (see
Theorem 1). We prove this statement for a slight modification of the dependence (34),
which ensures nonnegativity of prices.

Consider the following dynamics:

dπ(i)(t)
dt = −π(i)(t) z̄(i)(t)/γi, i = 1, . . . , n, (36)

where z̄(t) ∈ ∂TER(π(t)), and γi > 0 are some scaling parameters. Note that the
value z̄(i)(t) corresponds to accumulation rate of unsold volume of product i. Thus, the
coefficient γi has physical dimension of the volume of this product. It can be interpreted,
for example, as stock capacity.

Theorem 6 Let the optimal set Π∗ of optimization problem (9) be bounded. If π(0) > 0,
then π(t) > 0 for all t ≥ 0. Moreover, this trajectory converges to a single point from Π∗.

Proof:
Consider the entropy function η(τ) = τ ln τ , τ ≥ 0. We can define the Bregman distance
between two reals τ1 > 0 and τ2 ≥ 0 as follows:

ρ(τ1, τ2) = η(τ2)− η(τ1)− η′(τ1)(τ2 − τ1)

= τ2 ln τ2
τ1
− τ2 + τ1 ≥ 0.

Note that ρ(τ1, 0) = τ1. Therefore, for any sequence of positive numbers {τk} and any
value τ∗ ≥ 0, we have lim

k→∞
ρ(τk, τ∗) = 0 if and only if lim

k→∞
τk = τ∗. It is important that

ρ′1(τ1, τ2)
def= ∂

∂τ1
ρ(τ1, τ2) = 1− τ2

τ1
.
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Let us fix an arbitrary π∗ ∈ Π∗, and let TER∗ = TER(π∗). Consider the function

Vπ∗(t) =
n∑

i=1
γiρ(π(i)(t), π(i)

∗ ).

Since function TER(π) is convex and z̄(t) ∈ ∂TER(π(t)), we have

d
dtVπ∗(t) =

n∑
i=1

γiρ
′
1(π

(i)(t), π(i)
∗ )dπ(i)(t)

dt

(36)
= −

n∑
i=1

(
1− π

(i)
∗

π(i)(t)

)
z̄(i)(t)π(i)(t)

= −〈z̄(t), π(t)− π∗〉 ≤ −(TER(π(t))− TER∗).

Since Π∗ is bounded, this implies that the trajectory π(t) converges to Π∗. Denote now by
π∗ ∈ Π∗ a limiting point of any convergent sequence {π(tk)}, tk →∞. Since the function
Vπ∗(t) decreases monotonically, we conclude that lim

t→∞π(t) = π∗. 2

Note that the boundedness of the optimal set Π∗ is guaranteed by the productivity of
the market (see Definition 3 and the proof of Theorem 2).

The equation (36) for price dynamics can be written in the following form:

d
dt

(
ln π(i)(t)

)
= −z̄(i)(t)/γi, i = 1, . . . , n. (37)

Hence, we obtain the following discrete-time dynamics:

ln
(

π
(i)
t+1

π
(i)
t

)
= − z̄

(i)
t
γi

, i = 1, . . . , n. (38)

Surprisingly enough, the latter logarithmic dependence may be interpreted as the Weber-
Fechner law from psychophysics (e.g., [7]). The Weber-Fechner law describes the relation-
ship between the physical magnitudes of stimuli and their perceived intensity. It states
that the subjective sensation is proportional to the logarithm of the stimulus intensity. In

our setting, −z̄
(i)
t

γi
is the perception resulting from the trade. The expression

π
(i)
t+1

π
(i)
t

represents

the relation of the previous price stimulus to the next one. This link to psychophysics can
open a door for behavioral interpretations of price dynamics.

8 Conclusion

In this paper we presented mathematical models of different market activities using the
new convex-concave framework. According to it, the concave variables correspond to
agents decisions and convex variables play the role of salaries and prices. Maximization
with respect to concave variables represents the rational choices of the agents, and mini-
mization with respect to convex variables leads to the market clearance. Thus, we justify
a new price principle: equilibrium system of salaries and prices corresponds to the minimal
value of the total excessive revenue of the market’s participants.

Overall, equilibrium prices and optimal agents’ strategies naturally induce the equilib-
rium market flows, the crucial concept of our paper. The existence and welfare theorems
for equilibrium market flow are proven by exploiting its characterization via the convex
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potential function, namely the total excessive revenue of the market. We argue that this
fairly general and novel modelling framework leads to a new understanding of the main
principles of functioning of markets of goods, labor, and resources.

In our next paper we will show how to model in a similar way the financial and capital
markets, the market of public goods, wholesale markets, etc. Note that all these particular
models can be easily incorporated into a general model describing the market of the whole
capitalistic economy. Surprisingly enough, our simple model gives a very transparent pic-
ture of the economical structure of capitalistic society. It appears that its main feature is
the feasibility of poverty for some market participants. By restricted involvement of these
marginal (or poor) agents into economic activities, the market clearance is guaranteed.
These participant produce (or consume) the amounts of goods which remain available at
the market.

From the algorithmic perspective, the new convex-concave framework provides a trac-
table model of the market. Under tractability we understand the existence of reliable
price dynamics whose trajectories converge towards global solutions from any initial price.
This price dynamics can be explained by certain numerical schemes aiming at minimizing
the total excessive revenue of the market. Note that these schemes are computationally
efficient due to the fact that the total excessive revenue is convex with respect to the system
of prices and salaries. We are going to discuss the algorithmic details and interpretations
in the forthcoming papers.
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Appendix. Primal-dual algorithm of optimal

consumption

Let us present now a simple mathematical justification for numerical method for solving
a scaled version of problem (25):

min
ξ∈∆d(e)

{
φ(ξ) def= ψ(D−1ξ)

}
,

where D is a diagonal matrix with vector σ at its diagonal. Note that∇φ(ξ) = D−1∇φ(D−1σ).
We denote λ ≡ λ(ξ) = D−1ξ.

Let us introduce the entropy prox-function

η(ξ) =
d∑

i=1
ξ(i) ln ξ(i), ξ ∈ ∆d(e).

Note that this function is strongly convex on ∆d(e) with respect to `1-norm with convexity
parameter one.

Let us fix the step parameter h > 0. The primal-dual gradient method [15] looks as
follows:

ξ0 = 1
de, ξk+1 = arg min

ξ∈∆n(e)

{
k∑

j=0
〈∇φ(ξj), ξ − ξj〉+ (k + 1)µkη(ξ)

}
, k ≥ 0, (39)

where µk > 0 are some scaling coefficients coefficients. Denote ŝk =
k−1∑
j=0

∇φ(ξj) (thus,

ŝ0 = 0). Then, in accordance to the rule (39) we have

ξ
(j)
k+1 =

exp

(
− ŝ

(j)
k+1

(k+1)µk

)

d∑
i=1

exp

(
− ŝ

(i)
k+1

(k+1)µk

) , j = 1, . . . , d.
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On the other hand,

ŝk+1 =
k∑

j=0
D−1∇ψ(λj),

where ∇ψ(λj) =
n∑

i=1

x
(i)
k

p(i) qi ∈ ∂ψ(λk), and the sharing vectors xk ∈ ∆n(e) having elements

x
(i)
k = 0 for i /∈

{
j : 〈qj ,λk〉

p(j) = ψ(λk)
}

. Thus, the process (39) constructs exactly the same
sequence of the internal prices for qualities {λk} as the behavioral strategy (26), (33).
Moreover, it is easy to see that hDŝk = sk.

On the other hand, method (39) is a variant of the method of dual averaging (see
(2.14) in [15]), with parameters

λk = 1, βk+1 = (k + 1)µk+1, k ≥ 0.

In accordance, to Theorem 1 in [15], we have

δ̂k
def= max

ξ∈∆d

k∑
i=0
〈∇φ(ξi), ξi − ξ〉 ≤ D(k + 1)µk+1 + L2

2

(
1
β0

+
k∑

i=1

1
iµi

)
,

where L = max
ξ∈∆d(e)

‖∇φ(ξ)‖∞ = max
i,j

1
σ(i) Q

(i,j) and D = ln d. Hence,

1
k+1 δ̂k ≤ Dµk+1 + L2

2(k+1)

(
1
β0

+
k∑

i=1

1
iµi

)
.

Hence, if µk gradually goes to zero, then the right-hand side of this inequality vanishes.
The best rate of convergence is achieved for µk ≈ O

(
1√
k+1

)
.

Finally, let us show that the above arguments ensure the convergence of the behavioral
strategy (26), (33). Denote λk = D−1ξk. Then ∇φ(ξk) = D−1∇ψ(λk), and we have

k∑
i=0
〈∇φ(ξk), ξk − ξ〉 =

k∑
i=0
〈D−1∇ψ(λk), ξk − ξ〉 =

k∑
i=0
〈∇ψ(λk), D−1ξk −D−1ξ〉

=
k∑

i=0
〈∇ψ(λk), λk − λ〉, ξ ∈ ∆d(e), λ = D−1ξ ∈ ∆d(σ).

Thus, hδ̂k+1 = δk. It remains to use equation (32).
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