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Abstract 
The Tobit model (censored regression model) is an important basic model appearing in many 
applications in economics. In this paper we consider a duration Tobit model in which a duration 
variable which counts the number of times the data is being censored is included as a covariate. We 
show that in this case, the dependent variable eventually becomes degenerate, which makes the 
asymptotic Fisher information matrix singular, rendering the standard methods of asymptotic inference 
inapplicable. We provide a simulation study and an empirical application to support our results. 
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1 Introduction

Recently, Basu and de Jong (2009) have shown that including duration variables in bi-

nary choice regressions may be problematic and, in some situations, invalidate statistical

inferences based on the asymptotic distribution of maximum likelihood estimators. For

example, Frederiksen et al. (2007) use duration variables in several limited dependence

models with group level heterogeneity in a panel data setting with large cross section and

small time dimension. Extending this model to the case with large time dimension will

lead to invalid inference based on asymptotic theory. The intuitive reason for the failure

of asymptotic theory is that duration variables act as stochastic trends, such that the

dependent variable may become degenerate.

In this paper, we show that a similar result holds for the classical regression model

with censoring, often called the Tobit model. Apart from the model being Tobit rather

than Probit, our paper is distinct from Basu and de Jong (2009) in several respects. First,

Basu and de Jong (2009) assume that the errors are i.i.d. while we allow for heterogenous

distributions and, hence, the inclusion of regressors other than the intercept. Second,

they assume that the support of the error is unbounded. This requires adding a uniform

integrability assumption on the error term which is not needed if the errors are bounded

from above. Finally, we provide a simulation study and a real data example for our results.

We show under mild conditions on εt that the inclusion of a duration variable in

the model causes the dependent variable to converge to a degenerate limit distribution,

which makes the Fisher information matrix singular and asymptotic statistical inference

impossible.

The following section presents the model, the assumptions and main results. Section

3 reports a simulation study to support the theoretical results, and Section 4 illustrates

the effects of including a duration variable in Tobit-type models in a well-known textbook

example. Section 5 concludes.

2 The model and main results

Let us consider the following censored regression model:

yt = max(0, γ0zt + x′
tβ0 + εt) (1)

where {εt} has mean zero and finite variance σ2
0 , xt is a k×1 vector of regressors and β0 is

a k× 1 vector of parameters of interest. The regressors xt are assumed to be sequences of

2



independent but not necessarily identically distributed random variables. In addition, the

model includes a duration variable zt which is defined as the number of consecutive zeros

of the yt sequence leaving out the current period. Thus zt counts the number of times the

data is being censored which may have some economic meaning. See e.g. Frederiksen et

al. (2007) whose empirical application uses limited dependence models with group level

heterogeneity in a panel framework. For example, yt could measure the supply of working

hours which is observed only if a person is employed, where zt measures the duration

of unemployment. In our setting we assume that γ0 < 0 which is motivated by the

assumption that the longer a person is absent from work activity, the smaller will be

his/her working hours supply.

Let F t
ε (·) > 0 denote the distribution of εt and I(·) the indicator function. Our results

are given under two separate sets of assumptions. The first set of assumptions is given in

the following.

(A1) {εt} is a sequence of independent random variables.

(A2) inft F t
ε(z) > 0, ∀z ∈ R.

(A3) supt εt ≤ M < ∞.

In the proofs we use the simplified model yt = max(0, γ0zt + εt). However, since we

do not impose a centering assumption on εt and allow for independent heterogeneous

distributions for the errors, the results remain true for model (1), which may include

other stochastic independent regressors. Assumption (A3) imposes an upper bound for

the support of εt, which allows to obtain a strong convergence result for the yt sequence.

Theorem 1 Under assumptions (A1)-(A3), limt→∞ yt = 0 almost surely.

This theorem shows that, under the first set of assumptions, the sequence yt converges

almost surely to zero. Note that this result is stronger than the analogous convergence

result of Basu and de Jong (2009) for the probit model, which is in probability.

The second set of assumptions, used for the following theorem, is without Assumption

(A3), so that the support of εt is unbounded as in Basu and de Jong (2009). In this case,

however, for the tobit model, we need the following additional assumption, which is a

uniform integrability condition.

(A4) lim supM→∞ supt E
(

|εt|1+δ I(εt ≥ M)
)

= 0 for some δ > 0.

3



We now have the following result.

Theorem 2 Under assumptions (A1), (A2) and (A4), limt→∞ yt = 0 in probability.

The intuition behind the convergence results of both theorems is as follows. Since there

is a positive probability that the error will be negative, the yt sequence will eventually be

zero in some period. This implies that the probability that yt will continue to be zero in

the next period increases because zt increases by one. As a result, the probability that

εt > |γ0zt + x′
tβ0| will approach zero causing the yt sequence to get stuck at zero.

We proceed by examining the implications of these results for the maximum likelihood

estimator (MLE) of the model parameters. We assume for simplicity and without loss of

generality that only the duration variable zt is included in the model and that σ0 = 1. In

order to formulate the likelihood function we note that the Tobit model can be written as

yt = Dt(γ0zt + εt) (2)

where Dt = I(γ0zt + εt > 0) and zt =
∑t

j=1

∏j
i=1 (1−Dt−i). Next, by assuming that the

error term is Gaussian we get

f(yt|yt−1, . . . , y0; θ) = [φ (yt − γzt)]
Dt [Φ (−γzt)]1−Dt

Hence the conditional likelihood for the sample can be written as

logLT (γ) =
1

n

n
∑

t=1

Dt log φ (yt − γzt) + (1−Dt) log Φ (−γzt) (3)

where (3) is maximized by γ̂n and the Hessian conditional on zt is given by

E (Ht(γ0)|zt) = −{[1− Φ (−γ0zt)] + Φ (−γ0zt)λ(zt) [zt + λ(zt)]} z2t , (4)

where λ(zt) = φ (γzt)/(1− Φ (γzt)) which is known as the inverse Mills’ ratio.

By standard asymptotic results for MLE, we would expect that

√
n(γ̂n − γ)

a∼ N
(

0,−
{

1
n

∑n
t=1E [Ht(γ0)]

}−1
)

.

However, Theorems 1 and 2 imply that zt → ∞, and by applying the l’Hôpital’s rule and

the dominated convergence theorem to (4), it follows that E (Ht) → 0 as t → ∞. There-

fore, the Fisher information matrix is singular, and estimation and statistical inference

using MLE is not possible for the Tobit model with duration variable.
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n γ = −0.1 γ = −0.15 γ = −0.2

β = 1

100 -0.35 -0.18 -0.048

500 -0.21 -0.006 -0.0001

2000 -0.03 0.00 0.00

10000 0.00 0.00 0.00

β = 2

100 -0.55 -0.43 -0.26

500 -0.50 -0.18 -0.02

2000 -0.39 -0.006 0.00

10000 -0.09 0.00 0.00

Table 1: Monte Carlo mean of yn over K = 10, 000 replications for alternative coefficients

of the duration variable γ, regression coefficients β, and sample sizes n.

3 Simulation study

In the following we present results of a simulation study. For each set of parameters, we

generate K = 10000 processes {yt} of length n, given by

yt = Dt(γ0zt + βxt + εt)

Dt = I(γ0zt + βxt + εt > 0)

zt =
∑t

j=1

∏j

i=1
(1−Dt−i).

The regressor xt is assumed to be i.i.d. uniformly distributed on (−1, 1), while the error

εt ∼ N(0, σ2), independent of xt. For this specification, βxt + εt is i.i.d. with mean zero

and variance σ2 + β2/3. The parameters β and σ essentially determine the dispersion of

βxt + εt, so we fix one of them, σ = 1, and let β ∈ {1, 2} to see how the effect of the

duration variable depends on the dispersion of the regression plus error term. For the

sample size n, we choose n ∈ {100, 500, 2000, 10000}. Table 1 reports the mean of yn over

the K replications.

The general conclusion is that in every case, the Monte Carlo mean of yn converges

to zero as n increases. The same is true for the corresponding standard deviations (not

reported here to economize on space). The effect is stronger when γ, the coefficient of the

duration variable, is increasing in absolute value. Convergence to zero takes longer when
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β and hence the dispersion of βxt + εt is larger, but the conclusions are the same.

4 Empirical example

We consider the classical textbook example of female labor supply based on Mroz (1987)

and data of the 1975 panel survey of income dynamics, see e.g. Example 16.3 of Wooldridge

(2002). The data set contains 753 observations on married white women, aged 30-60.

Of the full sample, 428 women had positive working hours, while the remaining 325

women did not work in 1975. First, a tobit model is estimated as in Wooldridge (2002),

where working hours is the dependent variable, which is left-censored at zero. We follow

Wooldridge in specifying the explanatory variables: a constant, non-wife income, educa-

tion, work experience, work experience squared, age, number of kids younger than 6, and

number of kids 6 to 18 years.

We then introduce a duration variable zt, defined by the number of successive periods

with zero working hours for a given woman. Since we do not have data for more than

one time period, we have to make assumptions about the impact of duration on working

supply. It is economically reasonable to assume that the impact is negative: the longer a

woman is absent from work activity, the smaller will be her working hours supply. Thus,

alternative negative coefficients γ are selected for the duration impact. The descriptive

statistics of the dependent variable are the following: Mean and standard deviation are

given by 740 and 871, respectively, while minimum and maximum are zero and 4950,

respectively. Based on these statistics, we choose a range of -100 to -500 for the γ param-

eter. We choose the average profile for each one of the explanatory variables, and then

simulate the model

yt = max(0, γzt + x′
tβ + εt), t = 1, . . . , n

for alternative values of n and γ. The number of replications is again K = 10, 000.

Table 2 reports the mean and standard deviation of yn over the K replications. Choosing

a sufficiently large absolute value of γ leads to degenerated yt series, which invalidates

inference based on asymptotic theory.

To assess how the maximum likelihood parameter estimates change when including

a duration variable, we make the simplifying assumption that the explanatory variables

remain unchanged over time for all women, except for the duration variable. We simulate

the model, which was estimated without duration (γ = 0), K = 10, 000 times with
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n γ = −100 γ = −200 γ = −300 γ = −400 γ = −500

100 558 (731) 253 (555) 34 (210) 2.45 (47) 0.05 (9.5)

200 555 (723) 126 (427) 1.5 (40.3) 0 (0) 0 (0)

500 518 (718) 11 (139) 0 (0) 0 (0) 0 (0)

1000 486 (695) 0.05 (11.5) 0 (0) 0 (0) 0 (0)

Table 2: Empirical example: Means of simulated yn over K = 10, 000 replications for the

estimated tobit model including a duration variable. Corresponding standard deviations

are in parentheses.

n = 100, including the duration variable and alternative values for γ. For each simulated

data series, we re-estimate the parameter vector β by MLE. The following table reports

the results. Not surprisingly, we observe dramatic changes in parameter estimates. This

confirms our message when including duration variables in models for limited dependent

variables.

5 Conclusions

We have shown that including duration variables in censored regression models may lead

to degenerate limited dependent variables and hence invalidate asymptotic inference. If

excluding such variables from the regression is not an option, then one might bound or

transform them in such a way that the stochastic trend character is avoided.

Appendix

Throughout the Appendix let ∆in =
∫ +∞

n
|x|dF i

ε(x) and ”i.o.” stand for infinitely often.

Also we assume without loss of generality that γ0 = −1.

For the original process {yt : t ≥ 0} we define the series {πn} of stopping times, as

follows:

πn = inf
{

t : ∩ n−1
i=0 {yt−i = 0}

}

where πn is the first time that the series has generated a realization of n consecutive zeros.

Note that πn is a random variable defined on the same probability space as the original

process, taking values in the time set N = {1, 2, ...}.
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coeff γ = 0 γ = −100 γ = −200 γ = −300 γ = −400 γ = −500

C 965.3053 1020.666 968.3520 953.6852 870.3407 725.8959

WE 80.64561 69.80077 67.16829 58.47226 53.64403 52.25296

PRIN -0.008814 -0.008979 -0.009716 -0.008809 -0.007575 -0.005903

WA -54.40501 -54.29680 -53.64290 -53.10886 -51.15087 -50.51516

KL6 -894.0217 -910.2960 -955.0989 -963.9229 -913.5043 -882.4327

K618 -16.21800 -20.77361 -28.27405 -37.84909 -43.12263 -34.47221

AX 131.5643 132.8219 131.5351 132.3745 127.5778 126.9951

AX2 -1.864158 -1.929180 -1.910915 -1.938532 -1.842695 -1.805661

R2 0.273 0.266 0.259 0.251 0.245 0.235

Table 3: MLE parameter estimates of β for alternative values of γ. Variables are: a

constant (C), non-wife income (PRIN), education (WE), work experience (AX), work

experience squared (AX2), age (WA), number of kids younger than 6 (KL6), and number

of kids 6 to 18 years (K618).

Lemma 1 πn is a well defined random variable.

Proof: Note first that

P (πn ≤ t+ n | πn > t) ≥ P (∩ n
i=1{yt+i = 0} | πn > t)

= P (∩ n
i=1{yt+i = 0})

=
∏n

i=1
F t+i
ε (i− 1) ≥ η > 0. (5)

The first inequality follows because the event ∩ n
i=1{yt+i = 0} is contained in the set of

events πn ≤ t+n, and the first equality follows because ∩ n
i=1{yt+i = 0} is independent of

yj, j = 1, . . . , t.

For some η, the last inequality in (5) follows from assumption A2. Thus, for all t ∈ N,

P (πn > t + n) = P (πn > t)− P (t < πn ≤ t + n)

= P (πn > t)− P (πn > t, πn ≤ t + n)

≤ P (πn > t)(1− η) (6)

Iterating on multiples of n yields, for every k ≥ 0,

P (πn > kn) ≤ (1− η)k → 0 as k → ∞, (7)
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and since P (πn = ∞) ≤ P (πn > kn) we deduce that P (πn = ∞) = 0. Hence πn is almost

surely finite. !

Lemma 2 Under assumption (A4), ∆in = o(n−δ) for some δ > 0.

Proof: Note that

E
(

|εi|1+δ I(εi ≥ n)
)

≥ nδE (|εi| I(εi ≥ n)) = nδ∆in (8)

The result follows by letting n → ∞, since the LHS approaches zero by assumption (A4).

!

Proof of Theorem 1: The proof uses similar arguments as in Theorem 1 of Basu and de

Jong (2009). Define In = {j ∈ N : P (πn = j) > 0}. Let P̄ = supj∈In P (yt > 0 i.o.|πn = j)

and

j̄ = inf
{

j : j ∈ In, P (yt > 0 i.o|πn = j) = P̄
}

(9)

Note that

P (∪j∈In{πn = j}) =
∑

j∈In
P (πn = j) = 1 (10)

Then,

P (yt > 0 i.o) = P ({yt > 0 i.o.} ∩ {∪j∈In{πn = j})

= P (∪j∈In {{πn = j} ∩ {yt > 0 i.o.}})

≤
∑

j∈In
P ({πn = j} ∩ {yt > 0 i.o.})

=
∑

j∈In
P (yt > 0 i.o.|πn = j)P (πn = j)

≤ P (yt > 0 i.o.|πn = j̄)
∑

j∈In
P (πn = j)

= P (yt > 0 i.o.|πn = j̄)

≤ P (∃t ≥ j̄, yt > 0|πn = j̄)

≤ P
(

∪l ≥n{εj̄+l−n − l ≥ 0}
∣

∣πn = j̄
)

=
∑∞

l=n
P
(

εj̄+l−n ≥ l
)

(11)

The first equality follows from (10), the first inequality holds by Boole’s inequality. The

conditional probability in the third equality is well defined since j ∈ In. The second

inequality follows from (9). The last equality follows from Assumption (A1) and because

{πn = j̄} depends only on {y0, ε1, . . . , εj̄}. Now, by Assumptions (A3) there exists M > 0

such that εj̄+l−n < M , hence the last term equals zero as n → ∞. !
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Proof of Theorem 2: Without loss of generality we can assume that j̄ = 0. When the

support of εt is unbounded we have

∑∞

l=n
P (l ≤ εl−n) =

∑∞

l=n

∑∞

i=l
P (i ≤ εl−n ≤ (i+ 1))

=
∑∞

i=n

∑i−n

j=0

∫ (i+1)

i

dF j
ε (x)

≤
∑∞

i=n

∑i−1

j=0

∫ (i+1)

i

|x|
i
dF j

ε (x)

≤
1

n

∑n−1

j=0

∫ +∞

n

|x|dF j
ε (x) +

∑∞

j=1

1

n+ j

∫ +∞

(n+j)

|x|dF n+j
ε (x)

=
1

n

∑n−1

j=0
∆jn +

∑∞

j=1

∆(n+j)

n+ j

≤ o(n−δ) +

∫ +∞

n

1

(n+ j)1+δ
(12)

where the last inequality follows from Lemma 2 and the last expression converges to zero

as n → ∞. The desired result follows from (11). !
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