Convertisseurs électromécaniques

lelec1310  2019-2020  Louvain-la-Neuve

Convertisseurs électromécaniques
Note du 29 juin 2020
Sans connaitre encore le temps que dureront les mesures de distances sociales liées à la pandémie de Covid-19, et quels que soient les changements qui ont dû être opérés dans l’évaluation de la session de juin 2020 par rapport à ce que prévoit la présente fiche descriptive, de nouvelles modalités d’évaluation des unités d’enseignement peuvent encore être adoptées par l’enseignant ; des précisions sur ces modalités ont été -ou seront-communiquées par les enseignant·es aux étudiant·es dans les plus brefs délais.
5 crédits
30.0 h + 30.0 h
Q2
Enseignants
Dehez Bruno;
Langue
d'enseignement
Français
Préalables
Ce cours suppose acquises des notions en électromagnétisme (énergie magnétique, flux magnétique, loi d'ampère, loi de Lenz-Faraday, ...) et en théorie des circuits (étude en régime permanent sinusoïdal de circuits mono et triphasés mettant en 'uvre des résistances, des capacités, des inductances couplées, utilisation des phaseurs, ...) telles qu'enseignées dans les cours LEPL1202 et LELEC1370.

Le(s) prérequis de cette Unité d’enseignement (UE) sont précisés à la fin de cette fiche, en regard des programmes/formations qui proposent cette UE.
Thèmes abordés
- Transformateurs monophasés et triphasé
- Théorie générale des convertisseurs électromécaniques
- Machines à champ tournants
- Machines asynchrones
- Machines synchrones
- Machines à courant continu
Acquis
d'apprentissage

A la fin de cette unité d’enseignement, l’étudiant est capable de :

1 Eu égard au référentiel AA du programme « Master ingénieur civil électricien », ce cours contribue au développement, à l'acquisition et à l'évaluation des acquis d'apprentissage suivants :
- AA1.1, AA1.2, AA1.3  - AA3.3   - AA5.4
Acquis d'apprentissage spécifiques du cours:
Plus précisément, au terme du cours, l'étudiant sera capable de :
- Relier les concepts fondamentaux (loi de faraday, énergie et co-énergie magnétique) aux équations électriques et mécaniques générales d'un convertisseur électromécanique
- En déduire, en régime permanent, les modèles (équations et schémas équivalents) de la machine à champ tournant, de la machine asynchrone (triphasée ou monophasée), de la machine synchrone et de la machine à courant continu (à collecteur ou à commutation électronique)
- Etablir, en régime permanent,  le modèle (équations et schéma équivalent) du transformateur (monophasé ou triphasé)
- Déterminer expérimentalement les paramètres de ces modèles
- Exploiter ces modèles, notamment via les diagrammes phasoriels, pour prédire les conditions de fonctionnement en fonction des conditions d'alimentation et de charge
En outre, l'étudiant pourra :
- Déterminer et interpréter les grandeurs caractéristiques d'un convertisseur électromécanique ou d'un transformateur
- Identifier les principales structures de convertisseurs électromécaniques à champ tournant
- Etablir les conditions permettant de garantir la conversion d'énergie dans un convertisseur électromécanique à champ tournant
- Expliquer le principe de fonctionnement du moteur universel
- Expliquer les différentes solutions permettant d'augmenter le couple de démarrage, de réduire le courant de démarrage ou de faire varier la vitesse d'un convertisseur électromécanique
- Expliquer le fonctionnement des régulateurs associés aux machines synchrones fonctionnant en génératrice ainsi que leur mode de démarrage et de synchronisation sur le réseau.
 

La contribution de cette UE au développement et à la maîtrise des compétences et acquis du (des) programme(s) est accessible à la fin de cette fiche, dans la partie « Programmes/formations proposant cette unité d’enseignement (UE) ».
Contenu
- Introduction, rappel des notions de base des circuits électriques (1h)
- Les transformateurs monophasés (4h) : fonction et utilité des transformateurs, structures, lois fondamentales, modèles du transformateur idéal, du transformateur parfait et du transformateur réel, transformateur en charge, essais, aspects constructifs
- Les transformateurs triphasés (1h) : rappel triphasé, constitution, modes de connexion, schéma équivalent monophasé
- La théorie générale des convertisseurs électromécaniques (2h) : classification des convertisseurs, structure, hypothèses de base, équations électriques, énergie et co-énergie magnétique, couple électromagnétique
- Les machines à champ tournant (4h) : structure, champ tournant, équations, alimentation, notation phasorielle, schéma équivalent, saturation, marche en machine synchrone et asynchrone, autres structures de machines à champ tournant
- La machine asynchrone triphasée (5h) : conditions d'utilisation, dispositions constructives particulières, équations, schéma équivalent, diagramme vectoriel (diagramme du cercle), caractéristique couple-vitesse, point de fonctionnement, effets des matériaux magnétiques, puissance et rendement, problèmes d'utilisation (couple-courant de démarrage vs rendement, réglage de la vitesse), applications particulières (déphaseur et régulateur d'induction, axe électrique - Selsyn, synchronoscope, amortisseur Leblanc)
- La machine asynchrone monophasée (1h) : structures, principe et équations
- La machine synchrone (4h) : introduction, dispositions constructives particulières, équations, schémas équivalents, diagramme vectoriel, point de fonctionnement (stabilité), réglage de la puissance active et réactive, régulateurs associés aux alternateurs, marche en moteur et en alternateur isolé, démarrage et synchronisation sur le réseau, machine synchrone en régime saturé, machine synchrone à pôles saillants
- La machine à courant continu à collecteur (2h) : dispositions constructives particulières, structure de base, coefficients d'inductances propres et mutuelles, équations, commutation linéaire, équations obtenues à partir des règles Blv et Bli, modes de fonctionnement et d'excitation, modes de démarrage, moteur universel
- La machine à courant continu à commutation électronique (2h) : structure, principe de commande, fonctionnement et équations à basse et haute vitesses
Méthodes d'enseignement
L'enseignement se fait sous forme de :
  • 13 cours magistraux ;
  • 7 séances d'exercices ;
  • 2 laboratoires en salle (transformateur et machine asynchrone)
  • 3 laboratoires virtuels.
Les laboratoires en salle sont réalisés par groupe de 4 ou 5 étudiants et mènent à la rédaction d'un rapport de synthèse intervenant dans l'évaluation finale du cours.
Les laboratoires virtuels sont réalisés de manière autonome par les étudiants via iCampus. Une séance de consultance est néanmoins organisée en salle informatique pour chacun des laboratoires.
La plateforme iCampus comporte également une série de questionnaires à choix multiple permettant aux étudiants d'évaluer et approfondir leur compréhension des notions principales vue au cours. Cette plateforme comporte également une série d'illustrations et de compléments destinés à mieux s'approprier la matière vue au cours.
Modes d'évaluation
des acquis des étudiants
 Les étudiants seront évalués :
- Collectivement sur base des rapports des deux laboratoires réalisés en cours de quadrimestre par groupe de 4 à 5 étudiants ;
- Individuellement sur base d'un examen écrit pour la partie exercice du cours et d'un examen oral pour la partie théorique.
Pour la partie écrite de l'examen, aucun document n'est autorisé, hormis un formulaire de deux pages A4 rédigé par l'étudiant et ne contenant que des formules, des schémas ou des graphes (aucune résolution d'exercices).
Autres infos
Une séance de monitorat est organisée en fin de quadrimestre
Bibliographie
- Transparents du cours
- Enoncés et solutionnaires d'exercices
- Notices de laboratoires et laboratoires virtuels
- Illustrations et compléments au cours
- QCM
- Livre de référence :
D. Grenier, F. Labrique, H. Buyse, E. Matagne, Electromécanique. Convertisseurs d'énergie et actionneurs, Dunod, Paris, 2e éd., 306p.
Faculté ou entité
en charge
ELEC


Programmes / formations proposant cette unité d'enseignement (UE)

Intitulé du programme
Sigle
Crédits
Prérequis
Acquis
d'apprentissage
Mineure en sciences de l'ingénieur: électricité (accessible uniquement pour réinscription)

Mineure en Electricité

Filière en Electricité