Multilinear algebra and group theory

lmat1231  2020-2021  Louvain-la-Neuve

Multilinear algebra and group theory
En raison de la crise du COVID-19, les informations ci-dessous sont susceptibles d’être modifiées, notamment celles qui concernent le mode d’enseignement (en présentiel, en distanciel ou sous un format comodal ou hybride).
5 crédits
30.0 h + 30.0 h
Q1
Enseignants
Caprace Pierre-Emmanuel;
Langue
d'enseignement
Anglais
Préalables

Le(s) prérequis de cette Unité d’enseignement (UE) sont précisés à la fin de cette fiche, en regard des programmes/formations qui proposent cette UE.
Thèmes abordés
Eléments de théorie des groupes : groupe quotient et théorèmes d'isomorphisme, abélianisation, groupes cycliques, groupes symétriques, actions de groupes.
Algèbre multilinéaire :  dualité, espace quotient, produit tensoriel d'espaces vectoriels.
Acquis
d'apprentissage

A la fin de cette unité d’enseignement, l’étudiant est capable de :

1

Contribution du cours aux acquis d'apprentissage du programme de bachelier en mathématique. A la fin de cette activité, l'étudiant aura progressé dans sa capacité à :
- Connaitre et comprendre un socle fondamental des mathématiques. Il aura notamment développé sa capacité à :
-- Choisir et utiliser des méthodes et des outils fondamentaux de calcul pour résoudre
des problèmes de mathématique.
-- Reconnaître les concepts fondamentaux de certains théories mathématiques actuelles.
-- Etablir les liens principaux entre ces théories, les expliquer et les motiver par des exemples.
- Dégager, grâce à l'approche abstraite et expérimentale propre aux sciences exactes, les aspects unificateurs de situations et expériences différentes en mathématique.
- Faire preuve d'abstraction et esprit critique. Il aura notamment développé sa capacité à :
-- Raisonner dans le cadre de la méthode axiomatique.
-- Reconnaître les arguments clef et la structure d'une démonstration.
-- Construire et rédiger une démonstration de façon autonome.
-- Apprécier la rigueur d'un raisonnement mathématique et en déceler les failles éventuelles.
-- Faire la distinction entre l'intuition de la validité d'un résultat et les différents niveaux de compréhension rigoureuse de ce même résultat.
Acquis d'apprentissage spécifiques au cours. A la fin de cette activité, l'étudiant sera capable de :
- démontrer quelques résultats de base de la théorie des groupes;
- utiliser quelques critères pour établir si un groupe possède une des propriétés vues au cours (par exemple: être abélien, cyclique, simple, symétrique, etc.) ;
- démontrer les propriétés de stabilité d'un certain type de groupes par rapport à une construction donnée (stabilité par produits directs, sous-groupes, quotients) ;
- reconnaître les propriétés universelles des structures algébriques et les utiliser pour déterminer si deux structures sont isomorphes ;
- définir et étudier les quotients des structures algébriques (groupes et espace vectoriels), en les analysant dans des exemples concrets ;
- déterminer si un endomorphisme est triangularisable, et dans ce cas trouver des bases de l'espace vectoriel permettant de le triangulariser ;
- utiliser les produits tensoriels dans la résolution de problèmes d'algèbre multilinéaire.
 
Contenu
Cette activité consiste à introduire des notions algébriques abstraites qui ont un rôle essentiel dans tout le cursus de bachelier et de master en sciences mathématiques et en sciences physiques : les groupes, les morphismes, les espaces vectoriels duaux, les produits tensoriels.
Les contenus suivants sont abordés dans le cadre du cours.
- Groupes et morphismes.
- Quotients de groupes et théorèmes d'isomorphisme.
- Groupes cycliques et diédraux.
- Actions de groupe.
- Groupes symétriques.
- Espace vectoriel dual, espace orthogonal.
- Triangularisation d'un endomorphisme.
- Produits tensoriels d'espaces vectoriels.
- Espaces de tenseurs.
Méthodes d'enseignement

En raison de la crise du COVID-19, les informations de cette rubrique sont particulièrement susceptibles d’être modifiées.

Les activités d'apprentissage sont constituées par des cours magistraux et des séances de travaux pratiques. Les cours magistraux visent à introduire les concepts fondamentaux, à les motiver par des exemples, en donnant des preuves complètes et détaillées des résultats principaux. Les séances de travaux pratiques permettent de s'approprier le contenu théorique et de le mettre en pratique par la résolution de problèmes divers et la réalisation autonome de démonstrations simples.
Modes d'évaluation
des acquis des étudiants

En raison de la crise du COVID-19, les informations de cette rubrique sont particulièrement susceptibles d’être modifiées.

L'évaluation se fait sur base d'un examen écrit portant à la fois sur la théorie et les exercices, ainsi que de deux projets personnels réalisés en cours de quadrimestre. On y teste la connaissance et la compréhension des notions et des résultats fondamentaux, la capacité de trouver et de rédiger une démonstration correcte, la maîtrise des techniques de calcul. Chaque étudiant peut choisir de présenter l'examen et les projets en français ou en anglais.
Ressources
en ligne
Site moodle.
Des notes de cours, les énoncés des exercies et les énoncés des projets sont postés en cours de quadrimestre. 
Bibliographie
A. Beardon. Algebra and geometry. Cambridge University Press, Cambridge, 2005.
S. Mac Lane and G. Birkhoff. Algebra. Third edition. Chelsea Publishing Co., New York, 1988.
R. Godement. Cours d'algèbre. Hermann, Paris, 1963.
Faculté ou entité
en charge
MATH
Force majeure
Modes d'évaluation
des acquis des étudiants
La crise sanitaire implique des incertitudes quant aux modalités d’évaluation en particulier pour la session de janvier. Ma modalité retenue pour ce cours est :
  • Examen écrit sur « Moodle (Devoir - Quiz) – Gradescope »


Programmes / formations proposant cette unité d'enseignement (UE)

Intitulé du programme
Sigle
Crédits
Prérequis
Acquis
d'apprentissage
Bachelier en sciences mathématiques

Approfondissement en sciences physiques

Mineure en mathématiques