Analyse des données discrètes

lstat2100  2020-2021  Louvain-la-Neuve

Analyse des données discrètes
En raison de la crise du COVID-19, les informations ci-dessous sont susceptibles d’être modifiées, notamment celles qui concernent le mode d’enseignement (en présentiel, en distanciel ou sous un format comodal ou hybride).
5 crédits
30.0 h + 7.5 h
Q2
Enseignants
Langue
d'enseignement
Français
Thèmes abordés
- Distribution multinomiale (marginales, conditionnelles et propriétés asymptotiques). - Tables de contingence à deux critères : indépendance et homogénéité, mesures d'association et tests particuliers (Fisher, Mac Nemar,...). - Tables de contingence à plusieurs critères : indépendance mutuelle, partielle et conditionnelle. - Modèles log-linéaires. - Modèles conditionnels * Principes généraux * Modèle linéaire généralisé * Modèles probit et logit. - Analyse discriminante multinomiale, sélection de variables explicatives.
Acquis
d'apprentissage

A la fin de cette unité d’enseignement, l’étudiant est capable de :

1 A. Eu égard au référentiel AA du programme de master en statistique, orientation générale, cette activité contribue au développement et à l'acquisition des AA suivants, de manière prioritaire : 1.3, 1.5, 2.2, 5.5, 5.6

Eu égard au référentiel AA du programme de master en statistique, orientation biostatistique, cette activité contribue au développement et à l'acquisition des AA suivants, de manière prioritaire : 1.3, 1.5, 2.2, 3.4, 5.5, 5.6, 5.7
B. Au terme du cours, l'étudiant sera initié aux techniques de base de l'analyse des données discrètes ou catégories et sera capable de les appliquer sur des données réelles au moyen de logiciels de statistique.
 
Contenu
Contenu - Distribution multinomiale (marginales, conditionnelles et propriétés asymptotiques). - Tables de contingence à deux critères : indépendance et homogénéité, mesures d'association et tests particuliers (Fisher, Mac Nemar,...). - Tables de contingence à plusieurs critères : indépendance mutuelle, partielle et conditionnelle. - Modèles log-linéaires. - Modèles conditionnels * Principes généraux * Modèle linéaire généralisé * Modèles probit et logit. - Analyse discriminante multinomiale, sélection de variables explicatives. Méthode Les exposés magistraux dont concentrés sur les 10 premières semaines du quadrimestre. Les quatre semaines suivantes sont consacrées à la réalisation, sans guidance, d'un travail d'application.
Modes d'évaluation
des acquis des étudiants

En raison de la crise du COVID-19, les informations de cette rubrique sont particulièrement susceptibles d’être modifiées.

Chaque étudiant reçoit un ensemble de données qu'il doit analyser au moyen de toutes les techniques vues au cours. Cette analyse fait l'objet d'un rapport que l'étudiant doit soumettre oralement devant les Professeurs. Durant la présentation de ce rapport, les Professeurs se réservent le droit d'interroger l'étudiant sur la matière vue au cours.
Autres infos
Préalables: Cours de base (niveau des bachelier) de Calcul des Probabilités et de Statistique.
Support de cours
  • transparents sur moodle
Faculté ou entité
en charge
Force majeure
Modes d'évaluation
des acquis des étudiants
La crise sanitaire implique des incertitudes quant aux modalités d’évaluation en particulier pour la session de juin. Deux options sont envisagées selon la sévérité des contraintes liées à la crise sanitaire.
Un plan A en présentiel :
  • Examen écrit
Un plan B en distanciel :
  • Examen écrit sur Moodle


Programmes / formations proposant cette unité d'enseignement (UE)

Intitulé du programme
Sigle
Crédits
Prérequis
Acquis
d'apprentissage
Master [120] en science des données, orientation statistique

Master [120] en sciences économiques, orientation générale

Certificat d'université : Statistique et sciences des données (15/30 crédits)

Master [120] : ingénieur civil en mathématiques appliquées

Master [120] en statistique, orientation générale

Master [120] en statistique, orientation biostatistiques