Project in Electrical Engineering: Optimization of wireless embedded sensing systems

lelec2103  2021-2022  Louvain-la-Neuve

Project in Electrical Engineering: Optimization of wireless embedded sensing systems
5 crédits
22.5 h + 22.5 h
Thèmes abordés
In information and communication technologies (ICTs), embedded systems are computing systems that interact with the physical world with a dedicated function. They fill up our industrial world: from cash machines to consumer connected objects and IoT devices to automotive regulation systems to production-line control systems to medical equipment.
This integrated project deals with wireless embedded sensing systems and their core technologies from both the disciplines of the Master degree in electrical engineering (electronic circuits and systems, communication systems, information and signal processing, cryptography, electronic materials and devices, and energy) and from embedded software programming. We will specifically practice the multi-objective optimization of these embedded systems with respect to sensing performance, communication range, robustness, power consumption and resource usage.
Within the social-ecological transition, an important point is to use technologies like ICTs for meaningful applications with positive societal and/or environmental outcomes. In this project, we will focus on an audio monitoring system for natural ecosystem preservation.

A la fin de cette unité d’enseignement, l’étudiant est capable de :

. . Contribution of the activity to the learning outcomes of the program
In view of the LO reference framework of the "Master in Electrical Engineering", this course contributes to the development, acquisition and evaluation of the following learning outcomes:
  • LO1.1, 1.2 and 1.3
  • LO2.1, 2.2, 2.3, 2.4 and 2.5
  • LO4.1, 4.2, 4.3 and 4.4
  • LO5.1, 5.4, 5.5 and 5.6
  • LO6.1, 6.2 and 6.3
b. Learning outcomes
After this course, the students in electrical engineering should be able to:
  • Identify the limiting factors (bottlenecks) on performance in a wireless embedded sensing system: sensing performance, communication performance, security, resource usage.
  • Propose, implement and characterize a multi-objective optimization in a wireless embedded sensing system with respect to sensing performance, communication performance, hardware resource usage, security.
  • Evaluate experimentally the robustness of a wireless embedded sensing system against various environmental conditions and link them to its internal technical characteristics.
This project builds on the technologies and concepts already learned in the course LELEC2102 Integration of Wireless Embedded Sensing Systems (embedded systems, wireless communications, digital electronic systems, audio signal processing and data security), and may also feature the following technologies that the student can choose to study and practice in function of their personal interest:
  • Analog electronics for acoustic sensor interface and audio signal conditioning
  • Antenna for wireless communications
  • Photovoltaic energy harvesting and battery management
Méthodes d'enseignement
The teaching method is based on a few lectures (or podcasts) to introduce the scope of the project and the basic notions of the central technologies involved. Most of the work consists in the project realization in groups of students, with frequent meetings with the teaching team.
Modes d'évaluation
des acquis des étudiants
The group evaluation is based on an oral project presentation with questions from the jury and a live demo.
en ligne
Moodle of the course
Support de cours
  • Slides and/or podcasts of the introduction lectures.
Faculté ou entité
en charge

Programmes / formations proposant cette unité d'enseignement (UE)

Intitulé du programme
Master [120] : ingénieur civil électricien

Master [120] : ingénieur civil électromécanicien [Version 2020]