Enseignants
Langue
d'enseignement
d'enseignement
Anglais
Préalables
Concepts et outils équivalents à ceux enseignés dans les UEs
LSTAT2020 | Logiciels et programmation statistique de base |
LSTAT2120 | Linear models |
LSTAT2110 | Analyse des données |
Thèmes abordés
- Partitioning methods for clustering
- Statistical approaches for dimension reduction and feature extraction
- Regularization methods in high dimensions, including linear and nonlinear shrinkage
- Applications
Contenu
- Partitioning methods for clustering
- k-means and variants
- Nonlinear k-means with kernels
- Support Vector Machines and other multiple kernel learning machines
- Spectral clustering
- Statistical approaches for dimension reduction and feature extraction
- Factor models and probabilistic PCA
- Kernels for non-linear PCA
- Kernels for non-linear ICA
- Regularization methods in high dimensions, including linear and nonlinear shrinkage
- Applications
Méthodes d'enseignement
The lectures provide the theoretical material, give many practical examples, and show how to implement the methods in common programming packages.
Modes d'évaluation
des acquis des étudiants
des acquis des étudiants
Project using a real data set (40%), and an oral exam (60%)
Ressources
en ligne
en ligne
Transparents, codes R, données
Bibliographie
- Everitt, B. and Hothorn, T. (2011). An Introduction to Applied
Multivariate Analysis with R, Springer Verlag.
- Härdle, W. and Simar, L. (2015). Applied Multivariate Statistical
Analysis, Springer Verlag.
- Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of
Statistical Learning, Springer Verlag.
- Izenman, A.J. (2008) Modern multivariate statistical techniques, Springer
- James, Witten, Hastie, Tibshirani (2013) An Introduction to statistical
learning with applications in R, Springer
- Koch, I. (2014) Analysis of multivariate and high-dimensional data,
Cambridge
- Ledolter, J. (2013), Data Mining and Business Analytics with R, Wiley
- Zaki, M.J. and Meira, W. (2020) Data Mining and Machine Learning,
fundamental concepts and algorithms, 2nd ed., Cambridge.
Multivariate Analysis with R, Springer Verlag.
- Härdle, W. and Simar, L. (2015). Applied Multivariate Statistical
Analysis, Springer Verlag.
- Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of
Statistical Learning, Springer Verlag.
- Izenman, A.J. (2008) Modern multivariate statistical techniques, Springer
- James, Witten, Hastie, Tibshirani (2013) An Introduction to statistical
learning with applications in R, Springer
- Koch, I. (2014) Analysis of multivariate and high-dimensional data,
Cambridge
- Ledolter, J. (2013), Data Mining and Business Analytics with R, Wiley
- Zaki, M.J. and Meira, W. (2020) Data Mining and Machine Learning,
fundamental concepts and algorithms, 2nd ed., Cambridge.
Support de cours
- Transparents
Faculté ou entité
en charge
en charge