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Abstract. In this paper we consider the security of the Misty struc-
ture in the Luby-Rackoff model, if the inner functions are replaced by
involutions without fixed point. In this context we show that the success
probability in distinguishing a 4-round L-scheme from a random func-
tion is O(m2/2n) (where m is the number of queries and 2n the block
size) when the adversary is allowed to make adaptively chosen encryption
queries. We give a similar bound in the case of the 3-round R-scheme.
Finally, we show that the advantage in distinguishing a 5-round scheme
from a random permutation when the adversary is allowed to adaptively
chosen encryption as well as decryption queries is also O(m2/2n). This is
to our knowledge the first time involutions are considered in the context
of the Luby-Rackoff model.

1 Introduction.

Proving the security of block ciphers has been a long-standing problem,
and it is not solved yet. In their seminal paper [4], M. Luby and C. Rackoff
introduced a model that permits the assessment of the security of some
block cipher constructions. In this model, only the high-level structure of
a block cipher is considered, while the lower-level operations are replaced
by random functions. This last hypothesis is pretty strong, but at least
it permits to guarantee that the basic structure of a block cipher is not
flawed from the beginning.

More precisely, the model works as follows: let Φ(f1, ..., fr) be a con-
struction which to r functions f1, ..., fr : {0, 1}n → {0, 1}n associates one
function F : {0, 1}2n → {0, 1}2n. We consider a distinguishing algorithm
A which has unbounded computation capabilities, and can make a cer-
tain number of adaptively chosen encryption queries to an oracle function
O : {0, 1}2n → {0, 1}2n he received as an input1. Based on the answers he

1 The size of the input and output spaces of O are often 2n bits, where n is the size
of the inner functions. However these constraints are absolutely not mandatory; the
input and output sizes do not even need to be the same.
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obtains to his queries, A outputs either 0 or 1. Let p = Pr[AΦ(f∗
1 ,...,f∗

r ) = 1]
and p∗ = Pr[AF ∗

= 1] denote the probability that A outputs 1 when O is
respectively a function of the form Φ(f∗

1 , ..., f
∗
r ), where f∗

1 , ..., f
∗
r are per-

fect random functions (i.e. functions randomly chosen with respect to the
uniform distribution), or O itself is a perfect random function F ∗. We are
interested in the advantage A has in distinguishing Φ(f∗

1 , ..., f
∗
r ) from F ∗:

AdvA(Φ(f∗
1 , ..., f

∗
r ), F ∗) = |p − p∗|. A security proof in the Luby-Rackoff

model consists in upper bounding this advantage (as a function of the
number of queries m and the block size 2n) for all possible distinguishers
A. If for n big enough, and for all distinguishing algorithms A of which the
number of queries m is polynomial in n, AdvA is polynomially small, then
Φ is said to be pseudorandom. If this criteria still holds when decryp-
tion queries are allowed as well, then Φ is said to be superpseudoran-
dom. As a shortcut, an algorithm allowed to make adaptative encryption
queries only will often be called pseudorandom distinguisher, and an
algorithm allowed to make both adaptative encryption and adaptative
decryption queries will be called superpseudorandom distinguisher.

Luby and Rackoff’s paper initiated a significant amount of research
in the area: in 1992 Patarin [11, 12] made explicit the link between the
advantage and the transition probability associated with a given struc-
ture Φ (see section 2.3); this gives a practical way of upper bounding the
advantage. The same year, Maurer showed how to generalise undistin-
guishability results to locally random functions. More recently, Ramzan
and Reyzin introduced a new model which assumes that the attacker has
oracle access to some of the round functions [16]. Besides, the Feistel struc-
ture (first examined by Luby and Rackoff) was widely studied. On the
one hand, its security bounds were tried to be improved [11, 13, 14, 15]. On
the other hand, slightly modified constructions were examined: construc-
tions were some of the round functions are identical [12], or are replaced
by hash functions for example [5, 10]. Moreover some other constructions
were also examined [9, 19].

Recently, constructions used in the block ciphers Misty [6] and Kasumi
were examined. In 1997, Sakurai and Zheng [17] presented several negative
results (i.e. non-pseudorandomness and non-superpseudorandomness) on
these schemes. Then Gilbert and Minier [8] showed in 2001 that the 4-
round Misty construction (called L-scheme) is pseudorandom, while 3
rounds of its inverse (called R-scheme) is sufficient to obtain pseudo-
randomness. Moreover they showed that 5 rounds of these constructions
are necessary to obtain superpseudorandomness. The same year, Iwata
et al. [3] showed that some of the 5 inner permutations can be replaced
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by uniform ε-XOR universal permutations without losing superpseudo-
randomness; moreover, following the model of Ramzan and Reyzin [16],
they show that oracle access to some specific inner permutations does
not change superpseudorandomness either. Finally, the next year about
the same authors showed that the second inner permutation of a 5-round
Misty does not need to be cryptographic at all to guarantee superpseudo-
randomness: it can be a constant and public transformation g, provided
g satisfies g(x) ⊕ x �= g(x′) ⊕ x′ [2].

In this paper, we consider another restriction on the inner functions:
namely, we assume that all of them are random involutions (i.e. permuta-
tions c such that ∀x : c(c(x)) = x) without fixed point. For implementa-
tion reasons, involutions were a basis of the design of several recent block
ciphers (see e.g. Khazad [1], Anubis, Noekeon, ICEBERG [18]), hence the
interest of such hypothesis. We show that the pseudorandom character
of Misty constructions is preserved under this constraint (the number of
rounds considered remaining unchanged).

2 Preliminaries.

2.1 The Misty L- and R-Schemes.

We describe two basic schemes: the L-scheme has been used in the Misty [6]
and Kasumi block ciphers, the R-scheme is almost its inverse (we follow
the terminology used by Gilbert and Minier [8]).

We define a 1-round L-scheme as a 2n-bit permutation ψL taking a
n-bit permutation c as a round function and such that:

ψL(c)(L,R) = (R, c(L) ⊕R)

It is depicted in Figure 1. An r-round L-scheme is simply the composition
of r 1-round L-schemes, transforming r n-bit permutations c1, ..., cr into
a 2n-bit permutation:

ψL(c1, c2, ..., cr) = ψL(cr) ◦ ... ◦ ψL(c1)

A 1-round R-scheme transforms a n-bit permutation c into a 2n-bit
permutation ψR(c) too. It is defined as (see Figure 1):

ψR(c)(L,R) = (c(L) ⊕R, c(L))

The composition of r 1-round R-schemes is a r-round R-scheme:

ψR(c1, c2, ..., cr) = ψR(cr) ◦ ... ◦ ψR(c1)
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In this paper we consider variants of the ψL and ψR schemes, where
the last XOR operation is omitted, as well as the last swap. We call them
ψ′

L and ψ′
R.

Remark 1. Cryptographically speaking, ψ′
L and ψ′

R are equivalent respec-
tively to ψL and ψR.

Remark 2. ψ′
L(c1, c2, ..., cr) and ψ′

R(c−1
r , c−1

r−1, ..., c
−1
1 ) are inverses of each

other. It implies that their security against superpseudorandom distin-
guishers is the same.

c

RL

c

RL

Fig. 1. 1-round L-scheme at left, 1-round R-scheme at right

2.2 Notations.

Throughout this paper we use the following notations:

– In denotes the {0, 1}n set.
– I := Im

n (where m is the number of plaintext-ciphertext pairs consi-
dered).

– For X,Y ∈ I: X ∼ Y informally means that X and Y could be the
inputs and outputs of a permutation. More formally: ∀i, j ∈ [1...m] :
Xi = Xj ⇔ Yi = Yj .

– I �= := {X ∈ I|�i �= j ∈ [1...m] : Xi = Xj} I= := I\I �=.
– Let X be the subset of Im

2n such that ∀((Xi, Yi))i∈[1..m] ∈ X : ∀i �= j :
(Xi, Yi) �= (Xj , Yj). Then the m inputs to ψL (or ψR) are assumed2

to belong to X and denoted by (L,R) = ((Li)i∈[1..m], (Ri)i∈[1..m]) ∈
X . Similarly the m corresponding outputs are denoted by (S,T) =
((Si, Ti))i∈[1..m] ∈ X .

2 This hypothesis reflects the fact that the distinguisher is assumed not to make two
times the same query. As the distinguisher would learn nothing more when repeating
a query, there is no loss of generality.
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– f∗ always denotes a perfect random function (or permutation, or invo-
lution without fixed point, depending on the context), i.e. one which
is chosen in accordance with the uniform probability distribution.

2.3 Patarin’s Coefficient H Technique.

Let P(L,R)
(S,T) be the probability for a structure Φ(f1, ..., fr) to be such that

Φ(f1, ..., fr)(L,R) = (S,T) (computed over all possible f1, ..., fr)). Not
surprisingly, this probability plays a big role in upper bounding the ad-
vantage an algorithm A has in distinguishing Φ from a perfect random
function F ∗. The link between P(L,R)

(S,T) and the best advantage has been
quantified by Patarin [11, 12]3:

Theorem 1 (Patarin). Let F : I2n → I2n be a random function; let
F ∗ : I2n → I2n be a perfect random function. Let m be an integer. If there
exists a subset Y of Im

2n and two positive real numbers ε1 and ε2 such that

1. |Y| > (1 − ε1) · |I2n|m
2. ∀(L,R) ∈ X ∀(S,T) ∈ Y : P(L,R)

(S,T) ≥ (1 − ε2) · 1
|I2n|m

Then for any distinguisher A using m encryption queries

AdvA(F, F ∗) ≤ ε1 + ε2

Theorem 1 deals with pseudorandom distinguishers. A similar theorem
holds for superpseudorandom distinguishers:

Theorem 2 (Patarin). Let C : I2n → I2n be a random permutation; let
C∗ : I2n → I2n be a perfect random permutation. Let m be an integer, and
ε > 0. If for all (L,R) ∈ X , and all (S,T) ∈ X : P(L,R)

(S,T) ≥ (1 − ε) · 1
|I2n|m

then for any distinguisher A using m encryption or decryption queries:
AdvA(C,C∗) ≤ ε+ m(m−1)

2·22n

3 The 4-Round L-Scheme.

We consider a 4-round L-scheme were the inner permutations c∗1, ..., c∗4
are perfect random involutions without fixed point. In section 4 we will
prove the following lemma:

3 We particularized Patarin’s theorem to the case where the input and output sizes
are both 2n, but it holds for any size.
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Lemma 1. Let m,n > 0. Let (L,R) ∈ X ⊂ Im
2n, (S,T) ∈ I × I �=. Then

the probability for a 4-uple (c1, c2, c3, c4) of involutions without fixed point
to satisfy ψ′

L(c1, ..., c4)(L,R) = (S,T) is lower bounded by

[
1 − 15m2

2n
− 9

32

∞∑
k=2

(
16m2

2n

)k
]

· 1
22nm

≥
(

1 − 24m2

2n

)
· 1
22nm

B

A

RL

1c

2c

3c

4c

S T

Fig. 2. 4 rounds L-scheme

It allows to prove the following theorem:

Theorem 3. Let c∗1, ..., c∗4 be independent perfect random involutions with-
out fixed point on In. Let C := ψL(c∗1, ..., c∗4). Let F ∗ : I2n → I2n be
a perfect random function. Then for any pseudorandom distinguisher A
allowed to make m queries, we have:

AdvA(C,F ∗) ≤ 31m2

2 · 2n
+

9
32

∞∑
k=2

(
16m2

2n

)k

≤ 49m2

2 · 2n

Thus ψL(c∗1, ..., c∗4) is pseudorandom, and secure as long as m � 2n/2.

Proof. It is an immediate application of theorem 1. The constraint T ∈
I �= in lemma 1 implies a non-zero ε1. More precisely, ε1 is equal to the
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probability for a (perfect) random T ∈ I to belong to I=. It can be shown
to be smaller than m2

2·2n :

Pr[T ∈ I=] = Pr[
∨
i<j

Ti = Tj ] ≤
∑
i<j

Pr[Ti = Tj ] ≤ m2

2 · 2n

Lemma 1 gives the corresponding ε2.

4 Proof of Lemma 1.

For a given (L,R,S,T), we define λ and ρ as the number of independent
equalities of the form Li = Lj and Ri = Rj (i �= j), respectively. We also
define two intermediate states during the computation of ψ′

L(c1, ..., c4),
namely A := c1(L) ⊕ R and B := c2(R) ⊕ A (see Figure 2). Let P(L,R)

(S,T)
be the probability that a random 4-uple (c1, c2, c3, c4) is such that
ψ′

L(c1, c2, c3, c4)(L,R) = (S,T). Then

P(L,R)
(S,T) =

∑
A,B∈I

Pr[(c1(L) ⊕ R = A) ∧ (c2(R) ⊕ A = B)

∧ (c3(A) ⊕ B = S) ∧ (c4(B) = T)]
(1)

We consider the following conditions (C) on (A,B):

(C1) A ⊕ R ∼ L and �i, j s.t. Li = Aj ⊕Rj .
(C2) A ⊕ B ∼ R and �i, j s.t. Ri = Aj ⊕Bj .
(C3) B ⊕ S ∈ I �= and �i, j s.t. Ai = Bj ⊕ Sj .
(C4) �i, j s.t. Bi = Tj .

Then equation (1) implies:

P(L,R)
(S,T) ≥

∑
A,B∈I �=

(A,B) satisfies (C)

Pr[(c1(L) ⊕ R = A)] · Pr[c2(R) ⊕ A = B]

· Pr[c3(A) ⊕ B = S] · Pr[c4(B) = T]
(2)

The number of A such that (C1) is satisfied is (2n−m+λ)!
(2n−2m+2λ)! . For a (perfect)

random such A we have:

Pr[A ∈ I �=|(C1)] ≥ 1 −
∑
i<j

Pr[Ai = Aj |(C1)] (3)
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Consider given 1 ≤ i < j ≤ m, and assume Li �= Lj and Ri �= Rj . As
there are (2n−m+λ)(2n−m+λ−1) possible values for (Ai, Aj) satisfying
(C1), among which 2n −m+ λ satisfy Ai = Aj , we get

Pr[Ai = Aj |(C1)] =
2n −m+ λ

(2n −m+ λ)(2n −m+ λ− 1)
≤ 2

2n
(4)

If Li = Lj or Ri = Rj , it is easy to see that Pr[Ai = Aj |(C1)] = 0.
Then we have

Pr[A ∈ I �=|(C1)] ≥ 1 − m(m− 1)
2

· 2
2n

≥ 1 − m2

2n
(5)

Similarly, the number of B such that (C2) is satisfied is (2n−m+ρ)!
(2n−2m+2ρ)! ,

and Pr[B ∈ I �=|(C2)] ≥ 1 − m2

2n . Finally for a (perfect) random (A,B) we
compute:

Pr[B satisfies (C3) ∧ B satisfies (C4) ∧ A ∈ I �= ∧ B ∈ I �=|(C1) ∧ (C2)]

≥ 1 − Pr[
∨
i<j

Bi ⊕ Si = Bj ⊕ Sj |(C1) ∧ (C2)]

− Pr[
∨
i,j

Ai = Bj ⊕ Sj |(C1) ∧ (C2)] − Pr[
∨
i,j

Bi = Tj |(C1) ∧ (C2)] − 2 · m
2

2n

≥ 1 − m(m− 1)
2

· 2
2n

− 4m2

2n
− 2 · m

2

2n
≥ 1 − 7m2

2n

Thus the number of (A,B) ∈ I �= satisfying (C) can be lower bounded by:

(2n −m+ λ)!
(2n − 2m+ 2λ)!

· (2n −m+ ρ)!
(2n − 2m+ 2ρ)!

· (1 − 7m2

2n
) (6)

Under these conditions on (A,B) we can evaluate

Pr[(c1(L)⊕R = A)]·Pr[c2(R)⊕A = B]·Pr[c3(A)⊕B = S]·Pr[c4(B) = T]

and we obtain:
(2n−2m+2λ)!

22n−1−m+λ·(2n−1−m+λ)!
· (2n−2m+2ρ)!

22n−1−m+ρ·(2n−1−m+ρ)!
·
[

(2n−2m)!
22n−1−m·(2n−1−m)!

]2
[

2n!
22n−1 ·(2n−1)!

]4 (7)

After multiplication of (7) by the number of terms (6):

24m−λ−ρ · (2n − m + λ)! · (2n − m + ρ)!
(2n−1 − m + λ)! · (2n−1 − m + ρ)!

· (2n−1)!4

(2n)!4
·
[

(2n − 2m)!
(2n−1 − m)!

]2

·
(

1 − 7m2

2n

)

= 24m−λ−ρ ·
∏m−λ−1

i=0
2n−1−i
2n−i

· ∏m−ρ−1
i=0

2n−1−i
2n−i

·
(∏m−1

i=0
2n−1−i
2n−i

)2

(∏2m−1
i=m 2n − i

)2 ·
(

1 − 7m2

2n

)
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By lower bounding the products, this expression can be shown to be
greater or equal than:

24m−λ−ρ ·
(

2n−1 −m

2n −m

)4m−λ−ρ

· 1
22nm

·
(

1 − 7m2

2n

)
(8)

It is easy to show that 2n−1−m
2n−m = 1

2 − 1
2
∑∞

k=1
mk

2nk . Then (8) is greater or
equal than: (

1 −
∞∑

k=1

mk

2nk

)4m

· 1
22nm

·
(

1 − 7m2

2n

)
(9)

By evaluating the first factor using the binomial theorem, we can show(
1 −

∞∑
k=1

mk

2nk

)4m

≥ 1 − 1
2

∞∑
k=1

(
16m2

2n

)k

(10)

Finally, immediate calculations show that (9) is greater or equal than:[
1 − 15m2

2n
− 9

32

∞∑
k=2

(
16m2

2n

)k
]

· 1
22nm

≥
(

1 − 24m2

2n

)
· 1
22nm

(11)

which concludes the proof.

5 The 3-Round R-Scheme.

A result similar to theorem 3 can be proved for a 3-round R-scheme:

Theorem 4. Let c∗1, c∗2, c∗3 be independent perfect random involutions with-
out fixed point on In. Let C := ψR(c∗1, c∗2, c∗3). Let F ∗ : I2n → I2n be
a perfect random function. Then for any pseudorandom distinguisher A
allowed to make m queries, we have:

AdvA(C,F ∗) ≤ 11m2

2n
+

5
8

∞∑
k=2

(
8m2

2n

)k

≤ 13m2

2n

Thus ψR(c∗1, c∗2, c∗3) is pseudorandom, and secure as long as m � 2n/2.

6 The 5-Round Scheme.

The following lemma is proved in the next section:
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S T

B

A

C

RL

1c

2c

3c

4c

c5

Fig. 3. 5 rounds L-scheme

Lemma 2. Let m,n > 0. Let (L,R), (S,T) ∈ X ⊂ Im
2n. Then the prob-

ability for a 5-uple (c1, c2, c3, c4, c5) of involutions without fixed point to
satisfy ψ′

L(c1, ..., c5)(L,R) = (S,T) is lower bounded by

(
1 − 12m2

2n

)
· 1
2nm

Using theorem 2, it implies superpseudorandomness for a 5-round scheme:

Theorem 5. Let c∗1, c∗2, ..., c∗5 be independent perfect random involutions
without fixed point of In. Let C∗ be a perfect random permutation of I2n.
Let C := ψL(c∗1, c∗2, ..., c∗5) (resp. C := ψR(c∗1, c∗2, ..., c∗5)). Then for any
superpseudorandom distinguisher A allowed to make m queries:

AdvA(C,C∗) ≤ 12m2

2n
+

m2

2 · 2n

Thus ψ(c∗1, c∗2, ..., c∗5) is superpseudorandom, and secure as long as
m � 2n/2.
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The proof of lemma 2 will require the following lemma. Proving it is
easy, it is why we do not give the proof here.

Lemma 3. Let x, y ∈ In, 0 �= ∆ ∈ In. The probability for a random
involution without fixed point c to satisfy

c(x) ⊕ c(y) = ∆

is at most 4/2n.

7 Proof of Lemma 2.

We use the intermediate states A := c1(L)⊕R, B := c2(R)⊕A and C :=
c3(A)⊕B (see Figure 3). Let P(L,R)

(S,T) be the probability that a random 5-
uple (c1, c2, c3, c4, c5) of involutions is such that ψ′

L(c1, c2, c3, c4, c5)(L,R)
= (S,T). Then:

P(L,R)
(S,T) =

∑
A,B,C∈I

Pr[(c1(L) ⊕ R = A) ∧ (c2(R) ⊕ A = B)

∧ (c3(A) ⊕ B = C) ∧ (c4(B) ⊕ C = T) ∧ (c5(C) = S)]

(12)

We define the following three conditions (C) on (A,B,C):

(C1) �i, j : Li = Aj ⊕Rj and �i, j : Ri = Aj ⊕Bj

(C2) �i, j : Ai = Bj ⊕ Cj and �i, j : Bi = Cj ⊕ Tj

(C3) �i, j : Ci = Sj

Then P(L,R)
(S,T) is greater or equal than
∑

A,B∈I �=

A,B satisfy (C1)

(
Pr[(c1(L) ⊕ R = A) ∧ (c2(R) ⊕ A = B)]

·
∑
C∈I

C satisfies (C2),(C3)

Pr[c3(A) ⊕ B = C] · Pr[c4(B) ⊕ C = T] · Pr[c5(C) = S]
)

(13)

We first evaluate the inner sum for given A,B ∈ I �= satisfying (C1).
Adding constraints C ∼ S, C ⊕ T ∈ I �= and B ⊕ C ∈ I �= only removes
zero terms from the sum. Thus it is equal to:∑

C∼S
C⊕T∈I �=, B⊕C∈I �=

C satisfies (C2),(C3)

Pr[c3(A) ⊕ B = C] · Pr[c4(B) ⊕ C = T] · Pr[c5(C) = S]

(14)
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It is easy to see that |{C ∈ I : C ∼ S ∧ (C3)}| = (2n−m+σ)!
(2n−2m+2σ)! . Moreover

we compute:

Pr[C ⊕ T ∈ I �= ∧ B ⊕ C ∈ I �= ∧ (C2)|C ∼ S ∧ (C3)]

≥ 1 −
∑
i<j

Pr[Ci ⊕ Ti = Cj ⊕ Tj |C ∼ S ∧ (C3)]

−
∑
i<j

Pr[Bi ⊕ Ci = Bj ⊕ Cj |C ∼ S ∧ (C3)])

−
∑
i,j

Pr[Ai =Bj ⊕ Cj |C ∼ S ∧ (C3)]−
∑
i,j

Pr[Bi =Cj ⊕ Tj |C ∼ S ∧ (C3)]

We evaluate the first sum. For given 1 ≤ i < j ≤ m, if Si �= Sj and
Ti �= Tj , then the probability is smaller than 2

2n . If Si = Sj or Ti = Tj , it
is easy to see that it is 0. Therefore

∑
i<j

Pr[Ci ⊕ Ti = Cj ⊕ Tj |C ∼ S ∧ (C3)] ≤ m(m− 1)
2

· 2
2n

≤ m2

2n
(15)

The second sum can be bounded similarly.
We now consider the third sum. Let 1 ≤ i, j ≤ m. As there are 2n −

m+σ possible values of Cj satisfying C ∼ S and (C3), we obtain Pr[Cj =
Ai ⊕Bj |C ∼ S ∧ (C3)] = 1

2n−m+σ ≤ 2
2n . Therefore

∑
i,j

Pr[Ai = Bj ⊕ Cj |C ∼ S ∧ (C3)] ≤ m2 · 2
2n

(16)

The fourth sum can be bounded similarly.
Putting these inequalities together, we finally get

Pr[C ⊕ T ∈ I �= ∧ B ⊕ C ∈ I �= ∧ (C2)|C ∼ S ∧ (C3)] ≥ 1 − 6m2

2n
(17)

The probabilities in (14) are easy to evaluate. Thus (14) is lower bounded
by: [

(2n−2m)!
22n−1−m·(2n−1−m)!

]2 ·
[

(2n−m+σ)!
22n−1−m+σ ·(2n−1−m+σ)!

]
[

2n!
22n−1 ·(2n−1)!

]3 · (1 − 6m2

2n
) (18)

which is greater or equal than

23m−σ ·
(

2n−1 −m

2n −m

)3m−σ

· 1
2nm

≥
(

1 −
∞∑

k=1

mk

2nk

)3m

· 1
2nm

(19)
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It remains to evaluate∑
A,B∈I �=

A,B satisfy (C1)

Pr[(c1(L) ⊕ R = A) ∧ (c2(R) ⊕ A = B)] (20)

which is equal to

Pr[c1(L) ⊕ R ∈ I �= ∧ c1(L) ⊕ c2(R) ⊕ R ∈ I �=

∧ �i, j : c1(Li) = Lj ∧ �i, j : c2(Ri) = Rj ]

≥ 1 −
∑
i<j

Pr[c1(Li) ⊕ c1(Lj) = Ri ⊕Rj ]

−
∑
i<j

Pr[c1(Li) ⊕ c2(Ri) ⊕Ri = c1(Lj) ⊕ c2(Rj) ⊕Rj ]

−
∑
i<j

Pr[c1(Li) = Lj ] −
∑
i<j

Pr[c2(Ri) = Rj ]

Let 1 ≤ i < j ≤ m. Pr[c1(Li) ⊕ c1(Lj) = Ri ⊕ Rj ] is easy to evaluate. If
Ri ⊕ Rj = 0, then Li �= Lj and the probability is 0. If Ri ⊕ Rj �= 0, we
can apply lemma 3. Thus in any case

Pr[c1(Li) ⊕ c1(Lj) = Ri ⊕Rj ] ≤ 4/2n (21)

For shortness, let us denote Z(Ri, Rj) := c2(Ri) ⊕ c2(Rj) ⊕Ri ⊕Rj . The
terms of the second sum can be written:

Pr[c1(Li) ⊕ c1(Lj) = Z(Ri, Rj)]
= Pr[c1(Li) ⊕ c1(Lj) = Z(Ri, Rj)|Z(Ri, Rj) = 0] · Pr[Z(Ri, Rj) = 0]

+Pr[c1(Li) ⊕ c1(Lj) = Z(Ri, Rj)|Z(Ri, Rj) �= 0] · Pr[Z(Ri, Rj) �= 0]
= Pr[c1(Li) ⊕ c1(Lj) = 0] · Pr[Z(Ri, Rj) = 0]

+Pr[c1(Li) ⊕ c1(Lj) = Z(Ri, Rj)|Z(Ri, Rj) �= 0] · Pr[Z(Ri, Rj) �= 0]

If Ri = Rj then Li �= Lj and the first term is 0. Else by lemma 3 it is
not greater than 4/2n. Using lemma 3 again, the second term is also not
greater than 4/2n. The conclusion is that

Pr[c1(Li) ⊕ c2(Ri) ⊕Ri = c1(Lj) ⊕ c2(Rj) ⊕Rj ] ≤ 8
2n

(22)

Finally using (21) and (22), (20) is greater or equal than

1 − m(m− 1)
2

· 4
2n

− m(m− 1)
2

· 8
2n

− 2 · m(m− 1)
2 · (2n − 1)

≥ 1 − 8m2

2n
(23)
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Multiplying (19) and (23), we get

P(L,R)
(S,T) ≥

(
1 −

∞∑
k=1

mk

2nk

)3m

· 1
2nm

·
(

1 − 8m2

2n

)
(24)

which is greater or equal than (see proof of lemma 1)(
1 − 1

2

∞∑
k=1

(
8m2

2n

)k
)

·
(

1 − 8m2

2n

)
· 1
2nm

=
(

1 − 12m2

2n

)
· 1
2nm

(25)

8 Conclusion and Open Problems.

In this paper we showed that replacing the inner permutations of a Misty
structure by involutions without fixed point, without changing the num-
ber of rounds, did not significantly affect the previously known security
bounds.

Several open problems remain: first, one could wonder whether the
hypothesis “without fixed point” is important. Intuitively it is clearly
not, as taking the inner permutations from a (much) bigger set increases
the variety of functions one can generate, and hence the difficulty to
distinguish them from perfect random functions.

Also, it is an open question whether in some cases involutions achieve
significantly weaker security bounds than permutations. It should be in-
teresting to consider involutions as inner functions of structures different
from the Misty ones.

Finally, being able to do security proofs when the inner functions are
even more specific (i.e. drawn from a smaller set) than involutions without
fixed point would be nice, as it could maybe pave the way to security
proofs on structures closer to real-life block ciphers.
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