
Integer Factorization Based on Elliptic Curve Method:
Towards Better Exploitation of Reconfigurable Hardware

Giacomo de Meulenaer, François Gosset, Guerric Meurice deDormale∗, Jean-Jacques Quisquater

UCL/DICE Crypto Group, Place du Levant, 3, B-1348 Louvain-La-Neuve, Belgium
E-mail:{demeule,gosset,gmeurice,quisquater}@dice.ucl.ac.be

Abstract

Currently, the best known algorithm for factorizing mod-
ulus of the RSA public key cryptosystem is the Number Field
Sieve. One of its important phases usually combines a
sieving technique and a method for checking smoothness
of mid-size numbers. For this factorization, the Elliptic
Curve Method (ECM) is an attractive solution. As ECM
is highly regular and many parallel computations are re-
quired, hardware-based platforms were shown to be more
cost-effective than software solutions.

The few papers dealing with implementation of ECM on
FPGA are all based on bit-serial architectures. They use
only general-purpose logic and low-cost FPGAs which ap-
pear as the best performance/cost solution. This work ex-
plores another approach, based on the exploitation of em-
bedded multipliers available in modern FPGAs and the use
of high-performances FPGAs.

The proposed architecture – based on a fully parallel
and pipelined modular multiplier circuit – exhibits a 15-fold
improvement over throughput/hardware cost ratio of previ-
ously published results.

Keywords: Factorization, elliptic curve, FPGA, parallel
modular multiplier.

1 Introduction

With the advent of public key cryptography, many use-
ful functionalities appeared such as digital signature, public
key encryption, key agreement, ... For those needs, the most
deployed scheme remains RSA, co-invented in 1977 by R.
Rivest, A. Shamir and L. Adleman [16]. The security of this
cryptosystem relies on the intractability of the factorization
of big composite integers. This mathematical hard problem
experiences therefore a renewed interest. It is believed that
1024-bit RSA keys are sufficiently big to sustain today’s at-
tacks.

∗Supported by the Belgian fund for industrial and agricultural research

Currently, the best known algorithm for factorizing RSA
modulus is the Number Field Sieve (NFS), introduced by
Pollard in 1991. It is composed of a sieving and a matrix
step, the former being the most expensive part for 1024-bit
keys [6]. The reader is referred to [15] for an introduction
to the NFS and to [10] for the details. This paper focuses on
the sieving step and more precisely on the relation collec-
tion step. This task is usually performed by a combination
of a sieving technique and a method for factorizing mid-size
numbers [8]. While those numbers are easily factorizable,
the challenge lies in the amount of computation: factoriza-
tion of 1014 125-bit numbers for a 1024-bit modulus is re-
quired (using [3]). For this task, the Elliptic Curve Method
(ECM) appears as an attractive solution.

Up to now, the best successful factorization attempts
were for RSA-200 (663-bit) and RSA-640, solved in 2005
by Bahr, Boehm, Franke and Kleinjung. Beside those
software-based solutions, other propositions related to spe-
cial purpose hardware came out to lower the cost of both
machine and power consumption. Such proposals in the
context of the NFS sieving step are the TWINKEL device,
mesh-based sieving, TWIRL and SHARCS (see [17] for
an overview and references). ECM is one of the building
block of SHARCS [3] and it was proposed to combine it
with TWIRL in [5].

For the design of a hardware machine a platform has
first to be chosen. The two main possibilities are ASICs
(application-specific integrated circuits) or FPGAs (field
programmable gate arrays). While ASICs have potentially
the highest performance per transistor and the best power
consumption, the achievement of a real and working de-
vice is a long and very expensive process. FPGAs have
the advantage of adding an extra layer of abstraction during
the design. This results in low non-recurring engineering
(NRE) costs and a low development-production time. To-
gether with their increasing area & speed and falling prices
& power consumption, FPGAs are highly prized in the con-
text of cryptanalysis. Even if it appears that takingALL the
costs into account, ASICs are less expensive than FPGAs,
they are at least an interesting development platform.

This paper is structured as follows: Section 2 presents
previous works on hardware implementation of ECM and
explains our contribution. Then, Section 3 reminds the
mathematical background of elliptic curves and ECM. The
choices about the arithmetic circuits necessary for imple-
menting ECM are discussed in Section 4. The proposed
ECM architecture stands in Section 5 and implementation
results together with a quick cost assessment for factoriz-
ing 1024-bit modulus are provided in Section 6. Finally, the
conclusion and a few words about further works are given
in Section 7.

2 Previous Works and Contribution

The motivation of this work is to assess the cost of an
ECM processor as a support for the NFS algorithm. As
sketched in the introduction, this work focusses on a FPGA-
based ECM implementation. The aim is to show that em-
bedded multipliers of modern FPGAs are a key advantage
for ECM and that current high-performance FPGAs outper-
forms the throughpupt/cost ratio of low-cost FPGAs.

If the required number of ECM processors makes the use
of ASICs cheaper, the proposed FPGA design can still be
migrated to ASIC using standard library and IPs for multi-
pliers and RAMs.

2.1 Hardware Implementations

The first published hardware implementation of ECM
was proposed by Pelzl,Šimka et al. in 2005 [14]. The aim
of this circuit was to check the smoothness of sieving re-
ports of the SHARK device [3]. It is formed by a collection
of parallel ECM units in a Xilinx FPGA together with an ex-
ternal ARM microcontroller. Each unit embeds a memory, a
controller and an ALU able to perform addition/subtraction
and radix-2 Montgomery multiplication [11]. Carry propa-
gate adders were chosen. An improved pipelined version of
this design was later used in [5].

This proof of concept was deeply improved by Gaj
et al. in 2006 [4]. They removed the external micro-
controller and improved the operating frequency and the
Montgomery multiplier. They use two multipliers and one
adder/subtracter in parallel in each ECM unit. Carry save
adders were chosen. Their conclusion is that, compared
with high-performances FPGAs and general purpose pro-
cessors, low-cost FPGAs are the best choice for implement-
ing ECM.

2.2 Contribution

The common feature of all the previous works is the use
of a bit-serial by parallel architecture. All the arithmetic
circuits are built with the general purpose logic of FPGAs.

Modern FPGAs have interesting features including em-
bedded multipliers. It makes therefore sense to try to exploit
them. For instance, Virtex4SX devices embed 128, 192 or
512 DSP48 blocks able to perform17 × 17 unsigned mul-
tiply and accumulate/shift-and-add. Their low-cost coun-
terparts, the Spartan3 devices, are equipped with up to 104
17 × 17 unsigned multipliers. Hardware cost plays an im-
portant role here and fortunately, high-performances de-
vices like Virtex4 are no longer much more expensive than
low-cost FPGAs such as Spartan3. Together with their in-
creased speed, enhanced functionalities of DSP blocks and
their number of multipliers/$, Virtex4SX are therefore po-
tentially the sweet spot for the ECM application.

Our contribution is to show that building the core com-
ponent – the modular multiplier – with fully pipelined em-
bedded multipliers of high-performance FPGAs leads to a
highly efficient ECM processor. It is an order of mag-
nitude better than the low-cost solution presented in [4]
with respect to the cost/performance ratio. To exhibit the
full power of this approach, a parallel architecture with a
throughput of 1 multiplication per clock cycle was chosen.

The main motivation of this work is to propose a much
more efficient ECM engine for the SHARK device [3]. Fac-
torization of 125-bit numbers is therefore required and a
throughput of1014 factorizations over a year is needed for
the 1024-bit modulus.

3 Elliptic Curve Method

The Elliptic Curve Method is a probabilistic method for
integer factorization which uses elliptic curves. It is the
best known method to factorize mid-sized numbers together
with the Multiple Polynomial Quadratic Sieve (MPQS) [2].
ECM seems to be the best choice for hardware implemen-
tation since it is highly regular, not too I/O intensive and
many parallel computations are required [14].

3.1 Elliptic Curves

Let Zp be the set of integers{0, 1, . . . , p − 1} with a
primep > 3 with addition and multiplication (modp). A
non-singular elliptic curve (EC)E over Zp is defined as
a set of points(X, Y) ∈ Zp × Zp satisfying the reduced
Weierstrass equation, together with the point at infinityO:

Y 2 = X3 + aX + b

wherea, b ∈ Zp and4a3 + 27b2 6= 0. The elliptic curve
E together with an addition law admits a group structure
where the point at infinityO is the neutral element.

The addition of two pointsP = (xP , yP) and Q =
(xQ, yQ) (assuming thatP, Q 6= O) givesR = (xR, yR)

in most cases through the following computations:
{

xR = λ2 − xP − xQ

yR = λ(xP − xR)− yP

with λ =

{
(yQ − yP)/(xQ − xP) when P 6= ±Q
(3x2

P + a)/2yP when P = Q

The definition ofO solves the problem in the computa-
tion of λ when P is added to its inverse−P = (xP ,−yP

mod p). The result is defined asP + (−P) = O.
To speed up the computations, it is more efficient to use

elliptic curves with Montgomery form (cf. Section 3.4) :

bY 2 = X3 + aX2 + X (1)

wherea, b ∈ Zp, a
2 6= 4 andb 6= 0. When using ho-

mogeneous (projective) coordinates instead of affine coor-
dinates, Equation 1 becomes:

by2z = x3 + ax2z + xz2. (2)

The triple(x : y : z) represents(x
z
, y

z
) in affine coordi-

nates and(0 : 1 : 0) is the point at infinityO.
In this work, elliptic curves with Montgomery form in

homogeneous coordinates are used.

3.2 ECM Algorithm

The elliptic curve method for integer factorization was
invented by Lenstra [9]. It is an improvement of thep − 1
method of Pollard. Its description follows [12].

Thep− 1 method tries to find a prime factorp of n. The
first phase of the algorithm selects an integera and com-
putesb ≡ ak mod n with k > 0 divisible by all prime
powers below a boundB1. If p − 1 dividesk, thenp di-
videsb − 1 by Fermat’s little theorem(ap−1 ≡ 1 mod p
if gcd(a, p) = 1). Let d = gcd(b − 1, n). If 1 < d < n,
thend is a factor ofn. If d = n, k must be reduced. The
first phase fails ifd = 1. In this case, the computation can
be continued with the second phase. For this purpose, a
second boundB2 � B1 is selected and it is assumed that
p− 1 = qs, whereq dividesk ands is a prime betweenB1

andB2. If t ≡ bs−1 ≡ aks−1 mod n thenp dividest by
Fermat’s little theorem, sincep−1 dividesks. The problem
is to finds, and hencep.

Thep − 1 method can be seen as an attempt to find the
neutral element (i.e., 1) of the multiplicative group of the
nonzero elements ofZp. It fails if p − 1, i.e. the number
of elements (group order), cannot be written as a product
of prime powers smaller thanB1 and at most one prime
betweenB1 andB2. ECM avoids this by considering the
group of an elliptic curve overZp, where the number of
elements randomly varies. As a result, if the method fails
with one curve, another curve can be chosen with hopefully
a group order satisfying the required property.

In the ECM algorithm (Algorithm 1), the computations
are done modulon as if Zn was a field. If the point com-
puted at the end of the phase 1 is the point at infinityO
of E over Zp, then its coordinatez equals0 mod p and
gcd(z, n) can lead top. The operationkP is defined as
P + · · ·+ P (k times) and called scalar multiplication.

If Q = kP 6= O, k might miss just one large prime fac-
tor to divide the group order (as in Pollardp − 1 method).
Phase 2, also called continuation, tries every primep in the
range [B1, B2]. There are several ways to perform this task
[12]. The standard continuation was chosen here and seems
to be the most suitable continuation for a hardware imple-
mentation. Its description follows [4].

Algorithm 1 ECM factorization
Input: n to be factored, arbitrary curveE, pointP ∈ E overZn,
boundsB1 < B2 ∈ N

Output: d: factor ofn, 1 < d ≤ n, or Fail
Phase 1:

k ←
∏

p∈P,p6B1
pep , ep ← max{q ∈ N : pq

6 B2}

Q = (xq, yq, zq)← kP , d← gcd(zq, n)
if d > 1 then return d
else gotophase 2.

Phase 2:
t← 1

for eachp ∈ P such thatB1 < p < B2 do
(xpQ, ypQ, zpQ)← pQ

t← t · zpQ mod n, d← gcd(t, n)
if d > 1 then return d
else Fail(Try with another curve).

The standard continuation (Algorithm 2) avoids comput-
ing everypQ by using a parameter0 < D < B2 in order to
express each primeB1 < p < B2 in the formp = mD ± j
with j ∈

[
0, bD

2
c
]

and m varying to cover all the primes in
the interval[B1, B2]. Sincep is prime,gcd(j, D) = 1.

To speed up the computations, a usual way to proceed is
to precompute a tableT of the multiplesjQ of Q. Then, the
sequence of the pointsmDQ is computed and the product
of everyxmDQ·zjQ−xjQ·zmDQ for whichmD±j is prime
is accumulated. It is indeed possible to show (see [14]) that
pQ = O if and only if xmDQ · zjQ − xjQ · zmDQ ≡ 0
mod d (d is an unknown prime factor ofn).

3.3 Parametrization

The different values and parameters of this work were
chosen as in the work of̌Simka et al. [14] and Gaj et al. [4].
More precisely, same values forB1 andB2 are used:B1 =
960 andB2 = 57000. They were chosen to find factors of
up to around 40 bits. The parametrization of Suyama [20]
is also employed for the computation of initial points and
curve coefficients (a, b of Equation 2).

Algorithm 2 Standard Continuation (Phase 2)
Input: n, E, Q (result of phase 1),B1 < B2 ∈ N andD
Output: d: factor ofn, 1 < d ≤ n, or Fail
Precomputations:

Mmin ←
⌊(

B1 + D
2

)
/D

⌋
, Mmax ←

⌈(
B2 −

D
2

)
/D

⌉

TableJ : j ∈ {1, . . . , D
2
} s.t.gcd(j, D) = 1

TableMJ : MJ [m, j]← 1 if mD ± j is prime,else0,
with j ∈ J andMin ≤ m ≤Mmax

TableT : ∀j ∈ J , coordinates(xjQ :: zjQ) of pointsjQ
Main Computations:

t← 1, QD ← DQ, Qm ←MminQ
for m = Mmin to Mmax do

for j ∈ J do
if MJ [m, j] = 1 then

retrievejQ from tableT
t← t · (xQm · zjQ − xjQ · zQm)

Qm ← Qm + QD

return d← gcd(t, n)

Ideally, D should be taken near
√

B2 in order to mini-
mize the computations for the tableT and the sequence of
pointsQm. D must also be small enough and with many
prime factors in order to reduce the number of all possible
j (sincegcd(j, D) = 1) hence the size of the tableT . We
choseD = 2 · 3 · 5 · 7 = 210 which is close to

√
B2 = 239,

leading to 24 possible values forj.

3.4 Curve Arithmetic

With elliptic curve in Mongtomery form and homoge-
neous coordinates, the addition and doubling of points can
be done without the costly modular division. The interme-
diate computations of these operations do not use they co-
ordinate (cf. Algorithm 3), which can be recovered from
the other coordinates. Nevertheless, this is not necessaryas
ECM does not usey coordinates.

Algorithm 3 Point add and double for Montgomery curves

xP+Q ← zP−Q[(xP − zP)(xQ + zQ) + (xP + zP)(xQ− zQ)]2

zP+Q ← xP−Q[(xP − zP)(xQ + zQ)− (xP + zP)(xQ− zQ)]2

4xP zP ← (xP + zP)2 − (xP − zP)2

x2P ← (xP + zP)2(xP − zP)2

z2P ← (4xP zP)[(xP −zP)2 +a24(4xP zP)] (with a24 = a+2

4
)

In Algorithm 3, the additionP + Q uses the coordinates
of the point differenceP −Q.

The scalar multiplication can be efficiently computed
with the Montgomery ladder Algorithm (4). The additions
in this algorithm can be computed with Algorithm 3 since
the point difference always equalsP0. If zP0

= 1 (e.g. after
normalization), the number of multiplications of each step
of the algorithm decreases from 11 to 10 (squarings are per-
formed with multiplications).

Algorithm 4 Montgomery ladder
Input: PointP0 ∈ E, k = (ks−1ks−2 . . . k1k0)2 > 0

Output: Q = kP0.
Q← P0, P ← 2P0

for i = s− 2 downto 0 do
if ki = 1 then Q← P + Q, P ← 2P
else P ← P + Q, Q← 2Q

return Q

In phase 2, the sequenceQm = Qm + QD can also be
computed with Algorithm 3 because the differenceQm −
QD equals the previous resultQm−1 (for the first addition,
QMmin−1 is precomputed).

4 Arithmetic Circuits

The effectiveness of the ECM processor lies in an effi-
cient area-time (AT) arithmetic unit. In particular, the mod-
ular multiplication plays a crucial role.

This work implies the use of a Xilinx’s Virtex4SX
FPGA. To ensure a high operating frequency and scalabil-
ity, each combinatorial operation is pipelined as much as
necessary. A digit size of 17 bits is chosen since it fits with
the 17 × 17 unsigned multipliers and the dedicated shift-
and-add functionality of the DSP48. Pipelined carry propa-
gate adders are also used to take advantage of the available
fast carry chain. It is also consistent with multipliers’ input.
The design is therefore both pipelinedhorizontally(e.g. the
carry chain) andvertically (e.g. between two adders).

4.1 Parallel versus Serial

Now that embedded multipliers are used, it is still nec-
essary to choose the type of architecture. As the modular
multiplication algorithms are typically iterative and regular,
the two main choices are an iterative (looped) or a parallel
(fully unrolled) architecture.

A good choice for an iterative architecture is a digit-
serial by parallel multiplier. It can be built with a pipelined
row of dlog217 ne multipliers (e.g. [18]). For this work, it
means a17 × 136 multiplier is required. The computation
loops over this multiplier and alternately processes a mul-
tiplication by a digit and the modular reduction. The ad-
vantage of this methodology is that resources grow linearly
with the operand width. The disadvantage is itsworst-case
behavior: area (or time, caused by extra iterations) has to be
spent to compute any irregular operation.

Another choice is a parallel multiplier. Both operands
enter in parallel and one multiplication is computed each
clock cycle. The high latency causes no data dependency
problems as there are many factorizations to perform at
the same time. Such circuit can be built with roughly

2dlog217(n)e2 multipliers. For this work, it means 16 cas-
caded17× 136 multipliers, or in other words 2 interleaved
136× 136 multipliers, are required. Economy of scale can
be achieved by the use of sub-quadratic algorithms for the
multiplication1. However, our preliminary implementation
results show that the improvement is not worth the effort for
considered bit-sizes. A parallel circuit has several advan-
tages: the circuit can be data-driven – removing the need
for control logic – and fully specialized for each operation
of the algorithm. Moreover, data loading and unloading are
simpler compared to a set of iterative architectures. As a
result this solution exhibits the best AT product. The disad-
vantage is the flexibility: the maximum bit-size depends on
the number of multipliers in the FPGA. The unused remain-
ing multipliers cannot be directly exploited as well.

To give the best advantage of the multipliers, a parallel
architecture was chosen for this work. As shown below,
it has many advantages from an AT point of view. With
the complexity above, the maximum bit-sizes are 135-bit
(SX25), 169-bit (SX35, with 8 LUT-based multipliers) and
271-bit (SX55). In the context of SHARK, a Virtex4 SX25
with 128 DSP multipliers is sufficient. Indeed, a number
of digits d = 8 provides a 135-bit modular multiplier and
requires2d2 + 1 = 129 multipliers. The last multiplier
has to be implemented with LUTs. If flexibility is an issue,
it is still possible to move to17 × 136 iterative modular
multipliers. The improvement will still be substantial with
respect to a pure LUT-based architecture.

4.2 Modular Multiplier

Montgomery multiplication [11] is an efficient way to
perform the modular multiplication, the most important op-
eration in ECM. Indeed, divisions by non power of two are
avoided and it mainly involves computations depending on
the LSBs. This is consistent with the carry propagation di-
rection of adders and enables pipelining of the carry chain.

The classical Montgomery multiplication algorithm
(cf. 5) works modn and needs a conditional final subtrac-
tion as the result is bounded by2n. This comparison causes
not only extra computations, it forces the complete propa-
gation of the carry pipeline. To avoid this problem, a conve-
nient solution is to work mod2n. Provided that4n < R, the
without final subtractionversion of the algorithm [19] en-
sures a bounded output (< 2n) if bounded inputsx, y < 2n
are applied. This technique is used in this paper.

The Montgomery multiplication works in the Mont-
gomery domain: it computesxyR−1 mod n instead ofxy
mod n. If the inputsx, y are in the Montgomery domain,

1This approach supposes to not interleave the multiplication and the
modular reduction. Here, this technique is only useful for the multiplica-
tion phase as truncated multiplications are used for the modular reduction
(cf. Section 4.2).

x̃ = xR mod n, ỹ = yR mod n, the output is also in the
Montgomery domain:x̃ỹR−1 mod n = xyR mod n.
All the phases of ECM can therefore be computed in the
Montgomery domain, leaving the removal of theR factor at
the very end of the computation.

Algorithm 5 Montgomery modular multiplication

Input: n, x, y with 0 ≤ x, y < n, R = bd with gcd(n, b) = 1

andn′ = −n−1

0 mod b.
Output: xyR−1 mod n.

A← 0
for i = 0 to (d− 1) do

ui ← (a0 + xi · y0) · n
′ mod b

A← (A + xi · y + ui · n)/b (A < 2n)
if A ≥ n then

A← A− n (A < n)
return(A)

In addition to the removal of the final subtraction, a mod-
ified version of the Montgomery multiplication introduced
by Orup in [13] and called “Montgomery Tail Tailoring”
in [7] is used (cf. Algorithm 6). It supposes a radixb
(equal to217) and inputs represented by their digits: i.e.
n = (nd−1 · · ·n1n0)b. Compared with the original algo-
rithm of Orup, the last iteration is computed as the classical
algorithm to avoid the increase of the dynamic by one digit.

Algorithm 6 Montgomery Tail Tailoring multiplication

Input: n, x, y with 0 ≤ x, y < 2n, R = 2bd with gcd(n, b) = 1

andn′ = −n−1

0 mod b.
Output: xyR−1 mod 2n.
Precomputation: ns = (nsd · · ·ns1ns0)b = n · n′.

A← 0
for i = 0 to (d− 2) do

ui ← (a0 + xi · y0) mod b
A← (A + xi · y + ui · ns)/b (A < bn + n)

ud−1 ← (a0 + xd−1 · y0) · n
′ mod b

A← (A + xd−1 · y + ud−1 · n)/b (A < 3n)
if A mod 2 = 1 then

A← A + n (A < 4n)
return (A/2) (A < 2n)

Algorithm 6 performs thed − 1 first iterations with a
scaled modulens = n · n′ such that its constantns′ =
−ns−1

0 mod b is equal to1. This is always the case since
n′ = −n−1

0 mod b. This simplification saves thed − 1
digit multiplications byn′ previously needed to updateui

in Algorithm 5. ns has one extra digit compared ton but
this does not increase the number of digit multiplications
sincens0 = −1 mod b = b − 1 and the least significant
digit of (A + xi · y + ui · ns) equals0 (by construction).
The update ofA in the for loop

A← (A + xi · y + ui · ns)/b

is therefore computed in practice by:

A← (A + xi · y)/b + ui · (nsd..1 + 1),

wherensd..1 = ns/b, meaning that only the digits1
to d of ns are kept. This input̃ns = nsd..1 + 1 can be
precomputed. The total number of digit multiplications is
(d − 1) · 2d + 2d + 1 = 2d2 + 1 instead of2d2 + d using
the classical Montgomery algorithm.

Our analysis on the bound of the Tail Tailoring Algo-
rithm2 showed that an extra correction step (A = A/2
mod n) is required to ensure thex, y < 2n precondition.

The circuit of the modular multiplication is presented in
Figure 1. Thed (8) iterations are implemented withd sim-
ilar circuits. However, they are slightly different for the
first and last iterations: the first is simpler sinceA = 0
and the last one usesn′ andn in place ofñs. In Figure 1,
only one of thed − 2 identical circuits for the other itera-
tions is represented. Each multiplier executes a1 × d-digit
product (17 × 136). The last multiplier (×n′) can be im-
plemented with general purpose logic, especially as it is a
truncated multiplication: only the LSBs are needed in the
stepud−1 ← (a0 + xd−1 · y0) · n′ mod b of Algorithm 6.

The 1 × d-digit products (17 × 136) are implemented
with cascaded DSP48s. To deal with the horizontal pipeline
behavior of adders, the digits of the operands are temporally
shifted, i.e. the next digit is sent one clock cycle after the
current one (Least Significant Digit first). This pipelining
method does not require extra resources except when the
shift size is different from the digit. The building block of
the1 × d-digit products (17 × 136) is sketched in Figure 2
and uses only DPS48’s resources.

+

»17

17LSBs

yj

xi

17

X
17

Figure 2. Building block of a1× d digits product

Because of the parallel behavior of the multiplier, shift
registers are needed to retime and feed the operands
throughout the circuit. According to Figure 1, the parallel
operandy must be provided in thed circuits implementing
the iterations. The same stands for̃ns except for the last
iteration. For operandx, each iteration consumes a digit.
As a result, the width of the shift register decreases with the
iteration number (not represented in Figure 1). Inputsn and
n′ can be inserted after a delay corresponding to the latency
of the circuits of the firstd− 1 iterations. For the correction

2For the bound, it is important to remember the conditionx < 2n
meaning thatxd−1 < b/2 − 1.

X

xX

+

x0

xX

+

Axi

xX
ui

u0

+

xX

+

A

ud-1

+

xd-1

x

xX

n’
n

»1

xyR
-1
mod 2n

+

0 1

0 n

y

y

y

lsbA

d-2

times

correction

step

ns~

ns~

ns~

Figure 1. Modular multiplier architecture

stepA = A/2 mod n, it is implemented by a shifter and a
conditional adder depending on the LSB ofA.

Using the parallel approach, circuits for the last iteration
and for the correction step maximize the AT product as they
are used each cycle. With the serial approach, those irregu-
lar operations would have been tackled either with a worst
case circuit (like the classical algorithm, loosing the saving
of d−1 digit multiplications) or with more time (using extra
cycles to lift the extra factors).

4.3 Modular Adder/Subtracter

Using a parallel architecture, a modular adder/subtracter
is not straightforward. Usually, several comparisons are re-
quired to ensure the result of an add/sub∈ [0, n[. Perform-
ing those comparisons would require breaking the temporal
shifting behavior of the inputs. A solution to this problem
is to make the result positive and divide it by4 mod n.

The add/sub circuit is presented in Figure 3. It uses two’s
complement representation and assumesA, B ∈ [0, 2n[.
The worst case for the addition(A + B)/4 mod n is

(A + B + 3n)/4. The result is therefore bounded by2n as
(4n+3n)/4 < 2n. For the subtraction the result is bounded
as−2n < (A − B) < 2n. If 2n is added to this result, it
also∈ [0, 4n[. The output is therefore also bounded by2n.

+

0 1

+ +

A B

2n

lsb

2nn

n

+

0 1

»2

Add/Sub

RedMod

(A+B)2
-2
mod 2n

Figure 3. Adder/Subtractor mod 2n

The RedMod control bit is computed as follows:
if n0 = 1 then LSB1(A±B) xor Add/Sub
elseLSB1(A±B) xor Add/Sub xor LSB0(A±B).

This circuit adds of course an extra2−2 factor. To avoid
this problem, all the operands are pre-multiplied by a factor
24 mod n. This works well with the Montgomery multi-
plication since(A24R±B24R)/4×(A′24R±B′24R)/4 =
C22R× C′22R = C22R · C′22R ·R−1 = C · C′24R.

5 Proposed ECM Architecture

Based on the arithmetic core developed above, this sec-
tion presents the whole ECM architecture.

5.1 Architecture Overview

The global ECM architecture is illustrated in Figure 4.
It is made of a server (e.g. a PC) and an arbitrary number
of clients (for instance FPGAs). The hardware clients take
care of the computationally-intensive part of the work: the
scalar multiplication. The software server handles the low-
throughput operations like precomputations.

Here, the hardware clients are not supposed to perform
both phase 1 and 2. As many FPGAs are expected for a
1024-bit factorization, it is not a problem to specialize an
FPGA for a given task. Moreover, as a phase 2 is not al-
ways necessary, this approach is more convenient from a
computational load balancing point of view. The drawback
is the increased bandwidth requirements.

5.2 Software Server

Currently, the server computes for each curve the param-
etera24, pointsP0 and2P0 (for Algorithm 4) and Mont-

gomery constantsns, ñs and n′. P0 is normalized (di-
viding xP0

by zP0
) as it is also the pointP − Q of Al-

gorithm 3. Nevertheless, as coordinates of points must be
pre-multiplied by the Montgomery constant,zP0

equalsR
instead of 1. Those data are then transmitted to the clients
by any compliant mean. After the computation of a phase 1,
zQ is retrieved and agcd() is computed. The factor R must
also be lifted fromzQ by a division.

Those computations are achieved by a C program. It re-
lies on the easy-to-use and highly efficient GNU Multiple
Precision Arithmetic Library3 (GMP).

If the cost of the server’s task appears to be non negligi-
ble, a small arithmetic processor can still be included in the
hardware to take care of those computations.

5.3 Hardware Client

Concerning phase 1, the hardware client computes a
scalar multiplication for each curve. According to Algo-
rithm 3 and 4, each step implies the computation of both
2P andP + Q. Previous pointsP andQ or Q andP are
then overwritten by those new points, according to the cur-
rent bit of the constant scalark (pre-stored in memory).

0 1

RAM

C

RAM

B

RAM

n
+/- mod 2n

RAM

n’

RAM

ns~

RAM

A

RAM

D

+/- mod 2n

mod 2n

X

0 1

RAM

Buffer

Serial / Parallel 0 1 2

Load/Unload Circuit

FIFO
I/O

0 1 2

0 1

Figure 4. Architecture of ECM, Phase 1

The circuit implementing phase 1 is presented in Fig-
ure 4. Besides the two add/sub circuits and the modular
multiplier, memory and a simple load/unload architecture
to communicate with the server are needed. For each of
the 4 RAM banks A-B-C-D, each curve owns 2 memory
locations reachable with the same addresses. The memory
stores the coordinates of pointsP andQ, a24, xP−Q and

3Available athttp://www.swox.com/gmp/

intermediate results. Those data stand in the 8 possible lo-
cations in such a way that each input of both add/sub cir-
cuits is directly fed by a RAM. This means no multiplexer
is required. There are more intermediate results than the 2
remaining locations but some can be overwritten. A par-
ticular case is the computation ofM10 (see below) where
(M2 −M1) cannot be re-computed later. This subtraction
is stored in the D RAM bank and bypasses the add/sub to
not add an extra2−2 factor (shaded elements of Figure 4).

Each of the A, B, C, D,n, ñs RAM bank is composed of
dd/2e (4) parallel Virtex4 block RAMs (bRAMs) of 34-bit
width. Two extra 17-bit registers are used to retime the read
and write of the two digits held in each 34-bit bRAM. The
global temporal shift of the digits is taken into account for
the read/write operations of each RAM bank. Then′ RAM
is different since it stores only one digit.

The purpose of the two multiplexers after the two
add/sub circuits is to allow the modular squaring operation.

Due to the latency of the arithmetic core, data-
dependency problems occur during computation of
Algorithm 3. Three independent steps can be extracted:

I M1 ← (xP − zP)2, M3 ← (xP − zP) · (xQ + zQ),
M2 ← (xP + zP)2, M4 ← (xP + zP) · (xQ − zQ)

II M5 ←M1 ·M2, M7 ← (M3 + M4)
2,

M6 ← (M2 −M1) · a24, M8 ← (M3 −M4)
2

III M9 ← xP−Q ·M8, M10 ← (M2 −M1) · (M1 + M6)

To cope with this dependency problem, computation on
another set of data (other curves) is started until completion
of the computation of the first set. With operands up to 135
bits, 32 curves running simultaneously are enough to ensure
that the pipeline is always filled.

In order to feed the FPGA and transmit the results back
to the server, a load/unload circuit is used (see Figure 4).
A FIFO (made of 2 bRAMs) buffers the communications
while a simple shift register deserializes/serializes thein-
puts/outputs. In order to reduce the overheads, a buffer
(made as a RAM bank) stores the results and the new data
during the computation of a phase 1. This renders negligi-
ble the delay between two phase 1 computations. For each
curve, the new data is a set of 8 values of 17d bits (136) and
the result consists in the pointQ (xQ, zQ, located in the C
and D RAMs).

5.4 Phase 2

This work focuses on phase 1. As a circuit for phase 2
can be implemented with a similar structure, provided re-
sults are sufficient to show the effectiveness of the proposed
method. The main difference is the need of extra RAM
banks for precomputed valuesxjQ and extra intermediate
results. As the computations are less specific, more mul-
tiplexors are also required to connect the different RAM

banks to the add/sub circuits.

The high level control of phase 2 lies in the iterative
lookup of tableMJ (Algorithm 2). As the number of tries
before finding the conditionMJ [m, j] = 1 is smaller than
the latency of the arithmetic core, no pipeline stalls occur.

6 Implementation Results

Implementation results were achieved for the small-
est Xilinx Virtex4 SX FPGA with the lowest speedgrade.
ISE 8.1 was used for synthesis and place & route while
test/debug was performed with Modelsim SE 6.1. For the
real tests, the setup was a Pentium4 3.2 Ghz desktop com-
puter running WindowsXP for the server and an Avnet
Virtex-4 SX35 Evaluation Kitfor the client. For testing pur-
poses, a slow RS232 communication between the PC and
the FPGA was used. A more appropriate fast connection
like USB2 should be used.

6.1 Software

In order to have a consistent Server-Client model, the
software server must be able to feed many hardware clients.
This puts the cost of the hardware in foreground, as ex-
pected. While in [4] the server overhead is very small, it
appears that our hardware is so fast that precomputations
and communication are not negligible at all.

For the communication, a burst of 32 data sets has to be
sent. For the 125-bit inputs of SHARK, each data set re-
quires7 × 125 + 17 bits for thea24, P0, 2P0, ñs, n and
n′ values. Assuming a 32-bit data bus and a rate of 16,000
phases 1 per second, a bandwidth of 15Mb/s is required.
If all the precomputation is performed in hardware, this re-
quirement can fall to 2Mb/s. When the computation is com-
pleted, only one value has to be sent back. This corresponds
to a bandwidth of 2Mb/s.

The slowest precomputation operations are thegcd()
and the 4 modular inversions required for the computa-
tion of a24, n

′, the normalization ofxP and lifting of R
in zQ. Other significant operations are the 25 multiplica-
tions. Multiplication is roughly 10 times faster than the in-
version on the selected software platform. With our setup,
the PC has the computational power to only deal with 4 FP-
GAs. A low-throughput arithmetic processor with support
for modular division and multiplication should therefore be
included in the FPGA. It should not pose any particular
problem as many slices are available (roughly 4000 from
Table 2). Phase 2 will definitively need hardware support
for precomputation and in particular for the tableT (set of
jQ).

6.2 Hardware Arithmetic Operators

The arithmetic operators were implemented for num-
bers up to 135 bits, a little more than the SHARK require-
ments. As all the circuits are pipelined, moving to other
lengths does not raise any particular issue. With this length,
the operands are represented by 8 digits and the Mont-
gomery constantR equals21+17·8 mod n. This means
that operands must be premultiplied by24+1+17·8 mod n.

The implementation results are given in Table 1. For the
modular multiplier, the maximum frequency reaches220
MHz despite the 100% utilization of the DSP multipliers.
The area requirements are satisfying since almost 66% of
the slices are available for the rest of the ECM processor.
The arithmetic operators produce an output per clock cycle.

135-bit Frequ. Area Through. DSP48
Designs [Mhz] [Slices] [Gbit/s]

Mult. 220 3405 (33%) 30 128 (100%)
Add/Sub 245 446 (4%) 33 0

Table 1. Implementation results on a XC4VSX25-10

6.3 ECM Architecture

Phase 1 was implemented for 135-bit numbers which is
different from the 198-bit numbers used by Gaj et al. [4]
and Pelzl,Šimka et al. [14]. Nevertheless, a comparison of
implementation results can be done on basis of extrapola-
tions since the size of their design varies linearly with the
size of the numbers. For 135-bit numbers, the size of their
design is approximately decreased by a factor198

135
and more

ECM units can therefore fit on an FPGA. The running time
is also shortened because of the serial by parallel architec-
ture. E.g. a modular multiplication is then performed in
135 + 16 clock cycles in place of198 + 16 (for [4]).

The impact of this bit-size scale down on the operating
frequency is more difficult to evaluate. However, as the de-
sign of Gaj et al. is scalable and uses carry save adders, it is
assumed that the operating frequency will not vary. Com-
pared to the design by Pelzl,Šimka et al., results of Gaj et
al. exhibit an improvement factor of3.4 in terms of through-
put/hardware cost ratio for phase 1. Only this factor will be
used for further comparison with the design ofŠimka et al.

In order to achieve the best throughput/hardware cost
ratio, the cheapest FPGA able to hold the modular multi-
plier was chosen: the Virtex4SX25-10. For other bit-sizes,
2007/2008 Xilinx’s prices for FPGAs of the same family
are $183 for the SX35 and $454 for the SX55 (2500 de-
vices). Using theEasyPath4 solution those prices can be

4Xilinx’s EasyPath means the FPGA correct behavior is only guaran-
teed for a given configuration.

Phase 1, 135-bit Gaj et al. [4] Our design

FPGA XC3S5000-5 XC4VSX25-10
Slices / ECM unit 2300 (7%) 6006 (58%)

(+ 128 DSP48)
bRAMS / ECM unit 2 (2%) 31 (24%)

Max frequency 100 MHz 220 MHz
Tclk / Mod. Mult. 151 1

Tclk / phase1 1.22 106 13,750
phases1/sec. / ECM unit 82 16,000

ECM units / FPGA 14 1
of phases1/sec. / FPGA 1148 16,000

FPGA price (quantity) $130 (104) $116 (2500)
of phases1/sec. / $100 883 13,793

Improvement factor 15.6

Table 2. Comparison of implementation results

lowered even further: $73 for the SX35 (104 devices) and
$230 (5 103 devices) for the SX55 with both a NRE cost
of $73000. Prices for low-cost Spartan3 FPGAs range from
$20 to $130 (104 devices). The biggest of this family was
chosen by Gaj et al.

The comparison of performances for phase 1 is given in
Table 2. The size of the whole ECM processor is domi-
nated by the modular multiplier (cf. Table 1). In terms of
throughput/hardware cost ratio, our design outperforms the
architecture of Gaj et al. by a factor13793

883
= 15.6and the

design of Pelzl,̌Simka et al. by a factor15.6 · 3.4 = 53.
This big improvement factor really suggests using high-
performances FPGAs and embedded multipliers instead of
general purpose logic.

6.4 Cost estimate for a sieving device

A significant improvement in the design of the ECM pro-
cessor has a great impact when considering the implemen-
tation of the entire NFS sieving step. Based on results of
Section 6.3 a quick cost assessment can be provided. Even
if phase 2 of the ECM algorithm was not explicitly imple-
mented, it is claimed that a similar structure as for phase 1
can be used. The running time of phase 2 should be about
13k clock cycles since it is roughly the number of modu-
lar multiplications. Assuming a frequency of220 MHz can
be reached as for phase 1, phase 2 should be performed ca.
2.2 10

8

13 103 u 16, 900 times per second per FPGA (i.e. $116).
From [3],1014 up to 125-bit numbers must be factored in

the sieving step of SHARK. If this task is distributed over
a year, approximately5.5 106 of these numbers must be
factored per second. According to [14],20 curves per num-
ber must be used to have a probability of success> 80%.
Unfortunately the success rate of the two phases is not in-
dependently provided. The worst case – meaning phase 2 is
always performed – is assumed in order to obtain a higher

bound for the cost estimate. In a second,5.5 106 factoriza-
tions require20 · 5.5 106 = 1.1 108 phases 1 and phases 2
which are respectively achieved by1.1 10

8

16 103 u 6900 and
1.1 10

8

16.9 103 u 6500 FPGAs.
The overall purchase cost of FPGAs for the ECM fac-

torizations of the sieving step is approximatively(6900 +
6500) · 116 u $1.6 M. Roughly speaking, this price could
even be halved using SX55 FPGAs (with 4 ECM units each)
and the EasyPath solution. Using the design of Gaj et al.,
the same computations (135-bit inputs) – with about1148
phases 1 and1075 phases 2 per second – gives an overall
cost of roughly $25.8 M.

7 Conclusion and Further Work

This work presented a novel hardware architecture for
implementing ECM on FPGA. The motivation was to as-
sess the cost of an ECM processor as a support for the NFS
algorithm. The aim was also to show how to better exploit
resources of reconfigurable hardware platforms.

For numbers in the context of SHARK device (135-bit)
the throughput/cost ratio of the phase 1 was improved by a
factor15with respect to the best published results.

Further work on this topic should include the implemen-
tation of phase 2 and a small processor for the precompu-
tation. Digit-serial architecture could also be built, taking
this work as a benchmark for performances. Finally, figures
like power consumption of FPGAs and cooling, cost of a
complete board, expenses for housing and servers could be
included to achieve a complete cost assessment.

For the implementation of ECM, the big improvement
achieved in this paper really suggests using embedded mul-
tipliers and high-performances FPGAs (with a high multi-
plier density) instead of general purpose logic and low-cost
FPGAs.

References

[1] I.F. Blake, G. Seroussi, N.P Smart,Elliptic Curves in Cryp-
tography, London Mathematical Society, LNS 265, Cam-
bridge University Press, 1999.

[2] R. Brent, Recent Progress and Prospects for Integer Fac-
torisation Algorithms,COCOON’00, LNCS 1858, Springer-
Verlag, pp. 3-22, 2000.

[3] J. Franke, T. Kleinjung, C. Paar, J. Pelzl, C. Priplata, C.
Stahlke, SHARK: A Realizable Special Hardware Sieving
Device for Factoring 1024-bit Integers,CHES’05, LNCS
3659, Springer, pp. 119-130, 2005.

[4] K. Gaj, S. Kwon, P. Baier, P. Kohlbrenner, H. Le, M.
Khaleeluddin, R. Bachimanchi, Implementing the Elliptic
Curve Method of Factoring in Reconfigurable Hardware,
CHES’06, LNCS 4249, Springer, pp. 119-133, 2006.

[5] W. Geiselmann, F. Januszewski, H. K opfer, J. Pelzl, R.
Steinwandt,A Simpler Sieving Device: Combining ECM
and TWIRL, ICISC’06, LNCS, Springer, 2006.

[6] W. Geiselmann, A. Shamir, R. Steinwandt, E. Tromer, Scal-
able Hardware for Sparse Systems of Linear Equations,
with Applications to Integer Factorization,CHES’05, LNCS
3659, Springer, pp. 131-146, 2005.

[7] L. Hars, Long Modular Multiplication for Cryptographic
Applications,CHES’04, LNCS 3156, pp. 44-61, 2004.

[8] T. Kleinjung, Cofactorisation strategies for the number field
sieve and an estimate for the sieving step for factoring 1024
bit integers,SHARCS’06, Workshop on Special Purpose
Hardware for Attacking Cryptographic Systems, pp. 159-
168, 2006.

[9] H. Lenstra, Factoring integers with elliptic curves,Annals of
Mathematics, Vol. 126, pp. 649 - 673, 1987.

[10] A.K. Lenstra, H.W. Lenstra, The Development of the Num-
ber Field Sieve,Lecture Note in Math., Vol. 1554, Springer-
Verlag, 1993.

[11] P. Montgomery, Modular Multiplication without Trial Divi-
sion, Mathematics of Computation, No. 44(170), pp. 519-
521, 1985.

[12] P. Montgomery, Speeding the Pollard and elliptic curve
methods of factorization,Mathematics of Computation,
48(177), pp. 243 - 264, 1987.

[13] H. Orup, Simplifying Quotient Determination in High-
Radix Modular Multiplication,ARITH-12, IEEE, pp. 193-
199, 1995.

[14] J. Pelzl, M.Šimka, T. Kleinjung, J. Franke, C. Priplata, C.
Stahlke, M. Drutarovsky, V. Fisher, C. Paar, Area-time ef-
ficient hardware architecture for factoring integers with the
elliptic curve method,IEE Proceedings on Information Se-
curity, Vol. 152, No. 1, pp. 67-78, 2005.

[15] C. Pomerance, A tale of Two Sieves,Notices of the AMS, pp.
1473-1485, 1996.

[16] R.L. Rivest, A. Shamir, L.M. Adleman, A Method for Ob-
taining Digital Signatures and Public-Key Cryptosystems,
Communications of the ACM, Vol. 21, No. 2, pp. 120-126,
1978.

[17] SHARCS’05, Workshop on Special Purpose Hardware for
Attacking Cryptographic Systems, Paris, 2005.

[18] S.H. Tang, K.S. Tsui, P.H.W. Leong, Modular exponenti-
ation using parallel multipliers,FPT’03, IEEE, pp. 52–59,
2004.

[19] C.D. Walter, Precise Bounds for Montgomery Modular Mul-
tiplication and Some Potentially Insecure RSA Moduli,CT-
RSA’02, LNCS 2271, pp. 30-39, Springer, 2002.

[20] P. Zimmermann, 20 years of ECM,ANTS VII, LNCS 4076,
Springer, pp. 525-542, 2006.

