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Université catholique de Louvain, Crypto Group
Place du Levant, 3 1348 Louvain-la-Neuve, Belgium

{ciet, jjq, sica}@dice.ucl.ac.be − http://www.dice.ucl.ac.be/~crypto

1 Introduction

In this paper, we analyse the irreducibility of trinomials defined over F2[X].
For elliptic curve cryptography, prime extensions fields F2p are recommended
to avoid current attacks like the Weil descent attack [3]. One often represents
F2p as a quotient F2[X]/(f(X)), where f is an irreducible polynomial over F2 of
degree p.

Performance reasons impose that irreducible polynomials have the short-
est number of non zero terms. More precisely, the reduction polynomial plays a
fundamental role in the basic field operations and particularly in modular reduc-
tions. This in turn is related to the number of carries in each modular reduction
and this is where the structure of the polynomial plays a crucial role.

Recommended binary fields for elliptic curve cryptosystems, as in norms
IEEEP1363, ANSI X9.62 or SEC1, are produced together with irreducible trino-
mials or pentanomials when no irreducible trinomials exist. However criteria for
existence or non-existence of irreducible trinomials or pentanomials over given
extensions are not clearly stated in the cryptographic literature (but cf. [4, §
4.5.2]).

The purpose of this short note is a first attempt to clarify some parts of this
problem. We propose, following the work of [1, 6], to give a proof of the following
theorem.

Main Theorem. Let p be a prime, p ≡ 13 mod 24 or p ≡ 19 mod 24. Then
there are no irreducible trinomials of degree p over F2. In particular, the quotient
representation of 25% of all prime degree extensions of F2 has to use at least a
pentanomial as a reduction polynomial.

2 Proof of the Theorem

The proof relies on a theorem of Swan and Dalen [2, 6], originally due to Stick-
elberger [5]. We cite here a particular instance of the theorem.
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Theorem 1. Let f ∈ Fq[X] be a squarefree polynomial over the finite field with
q elements (q prime). Suppose f factors over Fq[X] into the product of r distinct
irreducible factors. Let F ∈ Z[X] be a representative of f , that is f = F mod q.
Then deg f − r is even if and only if disc F is a square mod4q.

By computing explicitly the value of the discriminant disc F in the case of tri-
nomials, Swan was able to deduce the following theorem.

Theorem 2. The polynomial Xn + Xk + 1 ∈ F2[X] has an even number of
irreducible factors if and only if

1. n is even, k is odd, n 6= 2k and nk/2 ≡ 0 or 1 mod 4,
2. n is odd, k is even not dividing 2n and n ≡ ±3 mod 8,
3. n is odd, k is even dividing 2n and n ≡ ±1 mod 8,
4. one of the previous cases holds with k replaced by n− k.

In particular if n = p is a prime congruent to ±3 mod 8, then Xp + Xk + 1
is irreducible implies that k or n − k must be equal to 2. Since Xp + Xk + 1
and Xp + Xp−k + 1 both have the same number of factors, we see that we are
reduced to examine the factorisation behaviour of Xp + X2 + 1 (when p ≡ ±3
mod 8).

However, if p ≡ 1 mod 3, it is immediate to see that X2 + X + 1 divides
Xp + X2 + 1. Thus, for p ≡ 13 mod 24 or p ≡ 19 mod 24, polynomials of the
form Xp +Xk +1 are all reducible. The density of such p’ s is 1/4, by the prime
number theorem for primes in arithmetic progressions. ut
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