UCL Université catholique de Louvain	LGBIO204	C		Biomechanics
	5.0 credits	30.0 h + 30.0 h	2q	

Teacher(s) :	Marchandise Emilie ; Henrotte François (compensates Marchandise Emilie) ;				
Language :	Anglais				
Place of the course	Louvain-la-Neuve				
Inline resources:	Moodle http://moodleucl.uclouvain.be/course/view.php?id=9104				
Main themes :	Fundamentals of fluid and solid biomechanics Biomechanics of the cardiovascular system, Biomechanics of the lung system Biomechanics of cells and bones Numerical and analytical modeling of biomechanical systems				
Aims :	With respect to the AA referring system defined for the Master in Biomedical Engineering, the course contributes to the development, mastery and assessment of the following skills : AA1.1, AA1.2, AA1.3 AA.2.2, AA2.3, AA2.4 AA.2.2, AA2.3, AA2.4 AA3.2, AA3.3 AA4.2, AA4.4 AA5.3, AA5.5, AA5.6 After this course, the student will be able - to understand and model the main biomechanical systems, - to use simulation tools (finite elements) to study the biomechanical models problems introduced in the course, - to make a documented choice between different model types according to the application. Transversal learning outcomes: - Finite element simulations - Use of open-source scientific software and of the Linux OS - Collaborative reporting and oral presentation The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programmes/ courses offering this Teaching Unit ".				
Evaluation methods :	 open-book written examination (55 % of final mark) project by groups of 2 or 3 with written report and oral presentation (45 % of final mark) 				
Teaching methods :	 Theoretical lectures Practical works devoted to getting acquainted with the simulation tools used for the project Q& mp;A sessions about the project 				
Content :	This course covers applications of biomechanics on living organisms and in medicine. The usefulness of mathematical modeling in better understanding physiological systems (cardiovascular system, blood system,) and in developing measurement/diagnostic apparatus and dedicated therapeutic devices is discussed. The course aims at showing that mathematical modeling has become a central issue in medical practice and gives access to information that could not be obtained with traditional methods. The first part of the course deals with biological transfer and flow problems. The second part introduces the mechanical aspects of the cardiovascular system and the cell structure. The third part deals with the biomechanics of solids and bones. During the practical works, clinical problems will be approached from the numerical and mathematical modeling point of view. A number of sessions will be dedicated to getting acquainted with finite element simulation tools to solve real-life biomechanical problems.				
Bibliography :	"Biomechanics", E. Marchandise, F. Henrotte, 2016				
Other infos :	The needed simulation tools are provided to the students in the form of a platform independent virtual machine (VirtualBox), with the Gmsh and Elmer software pre-installed. This virtual machine is run the students personal computers.				

Faculty or entity in	GBIO
charge:	

Programmes / formations proposant cette unité d'enseignement (UE)								
Intitulé du programme	Sigle	Credits	Prerequis	Acquis d'apprentissage				
Master [120] in Biomedical Engineering	GBIO2M	5	-	ھ				
Master [120] in Electrical Engineering	ELEC2M	5	-	٩				
Master [120] in Computer Science and Engineering	INFO2M	5	-	هر				
Master [120] in Mathematical Engineering	MAP2M	5	-	هر				
Master [120] in Mechanical Engineering	MECA2M	5	-	٩				
Master [120] in Electro- mechanical Engineering	ELME2M	5	-	٩				