UCLouvain

lingi2266

2018

Advanced Algorithms for Optimization

5 credits 30.0 h + 15.0 h Q1

T	0.1 8:					
Teacher(s)	Schaus Pierre ;					
Language :	English					
Place of the course	Louvain-la-Neuve					
Main themes	tree research exploration branch and bound relaxation (Lagrangian) and calculation of terminals local search mathematical programming constraint programming graph algorithms wide neighborhood research dynamic programming greedy algorithms and approximation algorithms multi-criteria optimization optimization without derivative comparisons of algorithms These methods will be applied to real problems like vehicle routing, scheduling and rostering confection, network design, scheduling and scheduling, etc					
Aims	Given the learning outcomes of the "Master in Computer Science and Engineering" program, this course contributes to the development, acquisition and evaluation of the following learning outcomes: • INFO1.1-3 • INFO2.3-5 • INFO5.3-5 • INFO6.1, INFO6.4 Given the learning outcomes of the "Master [120] in Computer Science" program, this course contributes to the development, acquisition and evaluation of the following learning outcomes: • SINF1.M4 • SINF2.3-5 • SINF5.3-5 • SINF6.1, SINF6.4					
	Students completing this course successfully will be able to • explain the algorithms for solving discrete optimization problems by describing precisely specifying the problems they solve, indicating their advantages, disadvantages and limitations (computing time, accuracy, problems of scaling, etc.), • identify the algorithms that apply to a discrete optimization problem they are facing and make an argued choice among them, • implement algorithms for solving discrete optimization problems. The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s) can be accessed at the end of this sheet, in the section entitled "Programmes/courses offering this Teaching Unit".					
Evaluation methods	Much of the evaluation is associated to pratical work (30% of points across three assignments). The remaining 70% will be assessed in a conventional manner with a written or oral examination. Projects can not be redone in the second session.					
Teaching methods	The presentation of the algorithms in the lecture will be accompanied by practical work (assignments / microprojects) requesting the implementation of an algorithm to solve a practical optimization problem. The evaluation work will be partially automated on the basis of the quality of the solutions found by the algorithms.					
Content	dynamic programming branch and bound linear programming Lagrangian relaxation column generation					

Université catholique de Louvain - Advanced Algorithms for Optimization - en-cours-2018-lingi2266

	 local search constraint programming and sat graph algorithms: flows comparisons of optimization algorithms These methods will be applied to real problems like vehicle routing, scheduling and rostering confection, network design, scheduling and scheduling, etc
Inline resources	https://moodleucl.uclouvain.be/course/view.php?id=9158 www.minicp.org
Other infos	Background: • LSINF1121
Faculty or entity in charge	INFO

Programmes containing this learning unit (UE)						
Program title	Acronym	Credits	Prerequisite	Aims		
Master [120] in Data Science Engineering	DATE2M	5		٩		
Master [120] in Computer Science and Engineering	INFO2M	5		٩		
Master [120] in Computer Science	SINF2M	5		٩		
Master [120] in data Science: Statistic	DATS2M	5		٩		
Master [120] in data Science: Information technology	DATI2M	5		٩		