
Université catholique de Louvain - Software Maintenance and Evolution - en-cours-2020-lingi2252

UCL - en-cours-2020-lingi2252 - page 1/4

lingi2252
2020

Software Maintenance and Evolution

Due to the COVID-19 crisis, the information below is subject to change, in particular that concerning the teaching mode
(presential, distance or in a comodal or hybrid format).

5 credits 30.0 h + 15.0 h Q1

Teacher(s) Mens Kim ;

Language : English

Place of the course Louvain-la-Neuve

Main themes Whereas many software engineering courses focus on building new systems from scratch, in industrial practice
software developers are often confronted with already existing software systems that need to be maintained, reused
or evolved. This requires specific skills to understand the design and implementation of an existing system and
which parts need to be modified, to build software systems that are easier to maintain, and to design systems with
reuse and evolution in mind from the very start.

This course will thus study a variety of techniques, tools and methodologies to help building software systems that
are easier to understand, maintain, reuse and evolve:

• Software development in the context of an existing code base as opposed to 'green field' development

o Software comprehension and concern location

o Change impact analysis

o Reverse engineering

• Software Maintenance

o Best programming practices

o Coding standards

o Design principles and heuristics

o Design patterns

o Refactoring

o Reengineering

• Software Reuse and Evolution

o The laws of software evolution

o Reuse techniques and design for reuse

o Libraries vs. application frameworks

• Software product lines

Aims

1

Given the learning outcomes of the "Master in Computer Science and Engineering" program, this course
contributes to the development, acquisition and evaluation of the following learning outcomes:

• INFO1.1 , INFO1.3
• INFO2.5
• INFO5.5

Given the learning outcomes of the "Master [120] in Computer Science" program, this course contributes
to the development, acquisition and evaluation of the following learning outcomes:

• SINF1.M3
• SINF2.5
• SINF5.5

Students completing successfully this course will be able to

• Understand the difficulties of developing code in a change context as opposed to 'green field'
development

• Assess the impact of a change request to an existing product of medium size.
• Describe techniques, coding idioms and other mechanisms for implementing designs that are more
maintainable.

• Understand how design patterns can improve the design of a software system.
• Refactor an existing software implementation to improve some aspect of its design.

Université catholique de Louvain - Software Maintenance and Evolution - en-cours-2020-lingi2252

UCL - en-cours-2020-lingi2252 - page 2/4

• Identify the principal issues associated with software evolution and explain their impact on the software
lifecycle.'

• Discuss the advantages and disadvantages of different types of software reuse.

- - - -
The contribution of this Teaching Unit to the development and command of the skills and learning outcomes of the programme(s)
can be accessed at the end of this sheet, in the section entitled “Programmes/courses offering this Teaching Unit”.

Evaluation methods Due to the COVID-19 crisis, the information in this section is particularly likely to change.
COURSE EVALUATION :

• [10%] Active participation during practical sessions
• [40%] 2 intermediate missions linked to the practical sessions
• [10%] demo of developed application at end of semester
• [50%] during exam session

• [25%] written exam
• [25%] presentation of a final mission

In case of doubt about the final grade, the teacher reserves the right to ask a student to pass a complementary
oral exam.

Teaching methods Due to the COVID-19 crisis, the information in this section is particularly likely to change.
COURSE ORGANISATION:

Theory sessions covering the different course topics

Practical sessions to apply the concepts in practice

• developing and evolving a maintainable and reusable software system

Missions to complete an application developed during the practical sessions

Content The course will cover a variety of techniques, tools and methodologies to help building software systems that are
easier to understand, maintain, reuse and evolve.

Preliminaries:

• Definitions and difference between software maintenance, software evolution and software reuse
• Different types of software maintenance and evolution
• Causes for software maintenance and change
• Technical debt
• Laws of software evolution

Domain modelling:

• Domain modelling and domain analysis
• Software product lines
• Feature-oriented domain analysis
• Feature modelling, commonalities and variabilities
• Feature relationships, dependencies and cross-tree constraints
• Semantics of feature models and feature model anomalies

Software reuse:

• Definitions of reusability, software reuse and reusable components
• How object-oriented programming promotes modularity, maintainability and reuse
• Encapsulation, information hiding, polymorphism and code sharing
• Key object-oriented concepts: object, classes, methods, messages, inheritance
• Polymorphism and dynamic binding
• Method overriding, self and super calls
• Abstract classes and methods
• Different kinds of inheritance: single, multiple, interfaces, mixins

Bad code smells:

• Bad smells
• Bad smells vs. refactorings
• Bad smell categories and examples
• Coupling and cohesion

Code refactoring:

• Refactoring (definitions, motivations, when should you refactor)
• Refactoring categories and examples
• Refactoring vs. code quality
• Merge conflicts due to refactoring

Software patterns:

• Christopher Alexander’s building architectural patterns
• (Software) design patterns (definitions, motivations, structure)

Université catholique de Louvain - Software Maintenance and Evolution - en-cours-2020-lingi2252

UCL - en-cours-2020-lingi2252 - page 3/4

• Abstract Factory design pattern
• Factory Method design pattern
• Strategy and Decorator design patterns
• Antipattern (definition, purpose, example: The Blob)
• The 7 deadly sins

Design heuristics:

• Design heuristics (definition, purpose, examples)
• Design heuristics related to inheritance and polymorphism
• Design heuristics related to cohesion
• Design heuristics related to coupling

Application frameworks:

• Object-oriented application frameworks (definition, purpose, examples)
• How frameworks can achieve software reuse
• The principle of inversion of Control (the “Hollywood” principle)
• Software frameworks vs. libraries
• Hotspots and hook methods
• Commonality and variability
• White vs. grey vs. black box frameworks
• Template method design pattern
• Design patterns vs. frameworks
• Refactoring to a framework
• Using template methods to evolve an application into a framework
• Refactoring to specialise or generalise class hierarchies

Industrial case study (invited speaker)

Context-Oriented Programming

• Traditional vs. context-oriented software
• Design heuristics (definition, purpose, examples)
• Context-oriented programming for dynamic software adaptation
• Implementing techniques for dynamic adaptation of software behaviour to context
• Method dispatch and method pre-dispatch
• Case studies of context-oriented programming systems

Additional sessions (if time remains)

• Reflection and metaprogramming
• Aspect-oriented programming

Inline resources Moodle course website

The course slides as well as other relevant and practical information related to the course will be accessible on
Moodle. The same platform will also be the means of communication between the teacher(s) and the students.

Bibliography
French
Compte tenu de la variété des sujets abordés, ce cours ne suivra pas un seul livre de référence, mais sera basé sur du
matériel provenant de nombreuses sources différentes. Les slides de cours seront le matériel de référence principale
pour ce cours et des pointeurs vers des lectures supplémentaires seront fournis par la plate-forme de cours en ligne.

English
Given the variety of topics covered, this course will not follow a single textbook but is based on material from many
different sources. As such, the course slides will be the main reference material for this course and pointers to
additional reading material will be provided through the online course platform.

Other infos Even though good quality software may be easier to maintain and evolve, software quality assurance techniques
will not be addressed explicitly in this course as they are the topic of a separate course on Software Quality
Assurance [LINGI2251]

Expected background:

• Having a good knowledge of and experience with object-oriented programming concepts, algorithms and data
structures.

• Having prior or simultaneous experience with the development of a medium- to large-scale software system.

Faculty or entity in

charge

INFO

https://moodleucl.uclouvain.be/enrol/index.php?id=4633

Université catholique de Louvain - Software Maintenance and Evolution - en-cours-2020-lingi2252

UCL - en-cours-2020-lingi2252 - page 4/4

Programmes containing this learning unit (UE)

Program title Acronym Credits Prerequisite Aims

Master [120] in Computer

Science and Engineering
INFO2M 5

Master [120] in Computer

Science
SINF2M 5

https://sites.uclouvain.be/archives-portail/ppe2020/en-prog-2020-info2m.html
https://sites.uclouvain.be/archives-portail/ppe2020/en-prog-2020-info2m-cours_acquis_apprentissages.html
https://sites.uclouvain.be/archives-portail/ppe2020/en-prog-2020-sinf2m.html
https://sites.uclouvain.be/archives-portail/ppe2020/en-prog-2020-sinf2m-cours_acquis_apprentissages.html

