UCLouvain 2020 Imeca2648 Nuclear thermal-hydraulics (Centre d'étude nucléaire-Mol)

Due to the COVID-19 crisis, the information below is subject to change, in particular that concerning the teaching mode (presential, distance or in a comodal or hybrid format).

5 credits	40.0 h + 7.5 h	Q1

Teacher(s)	Bartosiewicz Yann ;			
Language :	English			
Place of the course	Louvain-la-Neuve			
Main themes	 Reactor heat generation Transport equations (single-phase & two-phase flow) Thermal analysis of fuel elements (Single-phase fluid mechanics and heat transfer)'usually already known Two-phase flow dynamics Two-phase heat transfer Single heated channel; steady state analysis Single heated channel; transient analysis Flow loops Utilisation of established codes and introduction to advanced topics (modelling and thermalhydraulics for GEN4 reactors) 			
Aims	 To be familiarised with various reactor types and their main design and operational characteristics To learn how to estimate the volumetric heat generation rate in fission reactor cores under normal operation and shutdown conditions To learn how to analyse the thermal performance of nuclear fuel elements To learn the basic fluid mechanics of single phase reactor cooling systems To learn to calculate pressure drop in reactor systems, including tube bundles, and spacer grids To learn to analyse the heat transfer characteristics of single phase reactor cooling systems To learn the basic fluid mechanics of two-phase systems, including flow regime maps, void-quality relations, pressure drop, and critical flow To learn the fundamentals of boiling heat transfer, and its implications for reactor design To learn the fundamentals of core thermal design, with attention to design uncertainty analysis and hot channel factors. 			
Evaluation methods	Can be accessed at the end of this sheet, in the section entitled "Programmes/courses offering this Teaching Unit". Due to the COVID-19 crisis, the information in this section is particularly likely to change. Project (45%): set up a simulation tools to calculate the pressure drop in a boiling channel under different conditions Exam (55%): closed book. 4h. Understanding/theory/exercice			
Teaching methods	Due to the COVID-19 crisis, the information in this section is particularly likely to change. • 30h of ex catedra lectures • 14h of supervised personnal work • 24h of supervised exercice sessions The course takes place at the Nuclear Research Centre of Belgium (SCK.CEN) in gthe framework of the BNEN interuniversity programme (see: http://bnen.sckcen.be). Courses taking place at SCK.CEN are condensed over a period of 2 intensive weeks of courses.			
Content	 Lect. 1: Thermal design principles Lect. 2: Reactor energy distribution Lect. 3: Transport eqns. For 1-phase flow: Reminders/summary Lect. 4: Tranport eqns. For 2-phase flows:basic formulation Lect. 5: Tranport eqns. For 2-phase flows:equations Lect. 6: Thermodynamics, cycles: non-flow and steady flow Lect. 7: Thermodynamics, cycles: non steady flow first law Lect. 8: Thermal analysis of fuel elements Lect. 9: 1-phase fluid mechanics/heat transfer: Reminders/summary Lect. 10: 2-phase fluid mechanics/pressure drops Lect. 11: 2-phase fluid mechanics/pressure drops 			

Université catholique de Louvain - Nuclear thermal-hydraulics (Centre d'étude nucléaire-Mol) - en-cours-2020-Imeca2648

	 Lect. 12: 2-phase heat transfer (pool boiling) Lect. 13: 2-phase heat transfer (flow boiling) Lect. 14: Single-heated channel: steady state analysis Lect. 15: Flow loops
Inline resources	http://bnen.sckcen.be
Bibliography	 Todreas, N.E. and Kazimi, M.S. Nuclear System I: Thermal Hydraulic Fundamentals, CRC Press, 2012. Todreas, N. E. and Kazimi, M.S. Nuclear Systems II: Elements of Thermal Hydraulic Design, Hemisphere Publishing Corp., New York, 1990. REFERENCE BOOKS ON THE CONTENT
	•Todreas, N.E. and Kazimi, M.S. Nuclear System I: Thermal Hydraulic Fundamentals, CRC Press, 2012. Mandatory. •Todreas, N.E. and Kazimi, M.S. Nuclear Systems II: Elements of Thermal Hydraulic Design, Hemisphere
	Publishing Corp., New York, 1990. Advised.
Faculty or entity in charge	MECA

Force majeure

Teaching methods	The course could be given online (fully live lectures, recordings, hybrid form) according the sanitary situation.
Evaluation methods	The exam (written, closed-book) could be supervised online according the sanitary situation.

Programmes containing this learning unit (UE)						
Program title	Acronym	Credits	Prerequisite	Aims		
Master [120] in Electro- mechanical Engineering	ELME2M	5		هر		
Master [120] in Mechanical Engineering	MECA2M	5		٩		