Applied hydraulics : open-channel flows

lgciv2051  2021-2022  Louvain-la-Neuve

Applied hydraulics : open-channel flows
5.00 credits
30.0 h + 30.0 h
Q1
Teacher(s)
Soares Frazao Sandra;
Language
English
Prerequisites
Fundamental hydraulics or fluid mechanics, as taught in LGCIV1051
Main themes
  • Fundamentals in Hydrology
  • Open-channel flows (steady flows)
  • Weirs, and applications to spillways
Learning outcomes

At the end of this learning unit, the student is able to :

1 Contribution of the course to the program objectives (N°)
AA1.1, AA1.2, AA1.3, AA2.1, AA2.2, AA2.4, AA4.1, AA4.4, AA5.2, AA5.3
Specific learning outcomes of the course
  •  Determine the design discharge for several types of civil engineering works
  •  Design irrigation channels
  •  Design urban sewers
  • Calculate steady flow profiles in channels
  •  Describe and calculate the effects of local changes in the channel geometry on the flow (narrowing, widening, change in bed slope, presence of bridge piers)
  •  Design of spillways (normalized Creager profile)
Transversal learning outcomes of the course :
  •  Create and use and Excel sheet to solve in a simple and efficient way problems in hydraulic engineering
  •  Summarize the acquired knowledge in order to present on the blackboard a clear and concise answer to a given question
Initiate a general questioning on the use of water resources
 
Content
  • Introduction : purpose of open-channel hydraulics
  • Hydrology: rain, water cycle, measurement and analysis of discharges, rainfall-discharge relationships (unit hydrograph, rational method, Hauff-Vicari)
  • Steady open-channel flows: channels, sewers and rivers. Steady uniform flow: Chezy and Manning equations, optimal trapezoidal section, compound and heterogeneous channels, normal depth calculation in channels and sewers. Gradually varied flows: specific energy, critical depth, critical slope, flow profiles (theory and practical calculations). Flow in natural rivers: pseudo-uniform flow. Rapidly varied flow: hydraulic jump, drawn jump. Flow in non-prismatic geometry: flow between a gate and a reservoir, change in bed slope, change in channel width, presence of bridge piers, Venturi flumes, bottom sill, broad crested weir.
  • Weirs and spillways: Thin crested weir, normalized Creager profile, free or drawn outflow, spillways
Teaching methods
Lectures, practical exercises and laboratory, all in close link with each other. Depending on the number of registered students, courses will be given in the class or online.
Numerous examples of applications and real cases where the methods developed in the course were applied
Use of didactic softwares, videos and a MOOC course, creation of Excel calculation sheets
Evaluation methods
Exercises (1/3 of the final mark): homeworks (hydrology, spillways) and written test consisting in steady flow water profiles calculations using the Excel sheet.
Oral exam (2/3 of teh final mark) on the theoretical aspects, with 3 questions covering the entire course.
Online resources
Moodle web site for the course
MOOC edX « Hydraulique fluviale 1 : écoulements à surface libre »
Videos of the different lessons: LGCIV2051 - YouTube
Bibliography
Chow, "Open-channel hydraulics".
Lencastre, "Hydraulique générale".
Faculty or entity
GC


Programmes / formations proposant cette unité d'enseignement (UE)

Title of the programme
Sigle
Credits
Prerequisites
Learning outcomes
Master [120] in Civil Engineering

Master [120] in Architecture and Engineering