UCLouvain

lelec2330

Opto-electronic and power devices

2023

5.00 credits	30.0 h + 30.0 h	Q1

Teacher(s)	Flandre Denis ;Francis Laurent (coordinator) ;
Language :	English > French-friendly
Place of the course	Louvain-la-Neuve
Prerequisites	Students should master the basic operating principles and constitutive equations of semiconductor-based devices such as diodes and transistors (as seen in LELEC1755 or equivalent)
Main themes	Physical basis of electronics (Part 1):
Learning outcomes	
Evaluation methods	Students are evaluated individually on the basis of 1) a continuous evaluation through applied exercises during the semester of the course (compulsory works that cout for 4 points in the exam mark), and 2) a written exam during the exam session, including a part of developments of theoretical and applicative concepts, and another part of problem solving. The latter part is of the same level than those of solved during the practical sessions of the course. The points acquired during the continuous evaluation are kept for all the sessions of the same academic year.
Teaching methods	The teaching is based on lectures and companion practical sessions. The comparison between theory, simulations and characteristics of real devices is important in the teaching approach to discuss and validate the model simplifications. In particular, simple structures will be thoroughly analysed in support of the content of the first part and, for the second part, advanced simulations helped by dedicated softwares will aim at validating model hypothesis and to visualise the results. These might also be used within the continuous evaluation. Literature search and provided references will support finding of actual devices and allow to highlight differences found between experimental (or real) and simulated properties.
Content	The lectures present in a dynamic way, based in good part on questions by the students, the concepts described above. The lectures and the practical sessions are both complementary with the written notes that present the concepts in more details. Specific exercises aim at applying the course concepts to solve problems related to semiconductor physics and basic electronics devices. Part 1 – Physical basis of electronics • chapter 1: energy bands of the perfect crystal • chapter 2: energy bands of metals • chapter 3: energy bands of semiconductors • chapter 4: lattice vibrations • chapter 5: transport equations • chapter 6: carriers generation and recombination mechanisms Part 2 – Applied electronic devices • chapter 7: advanced p-n junctions • chapter 8: advanced MOS capacitors • chapter 9: photodiodes • chapter 10: photovoltaics solar cells
Inline resources	Moodle

Université catholique de Louvain - Opto-electronic and power devices - en-cours-2023-lelec2330

Bibliography	Notes and list of reference books available on Moodle (see above)
Faculty or entity in charge	ELEC

Programmes containing this learning unit (UE)						
Program title	Acronym	Credits	Prerequisite	Learning outcomes		
Master [120] in Electrical Engineering	ELEC2M	5		٩		
Master [120] in Energy Engineering	NRGY2M	5		٩		