UCLouvain

lepl1108

2024

Discrete mathematics and probability

5.00 credits 30.0 h + 30.0 h Q1

Teacher(s)	. SOMEBODY ;Delvenne Jean-Charles ;Pereira Olivier ;					
Language :	French					
Place of the course	se Louvain-la-Neuve					
Prerequisites	This course assumes acquired the basic notion of mathematics (analysis) such as taught in the course LEPL					
Main themes	The course presents the fundamental concepts of discrete mathematics (counting, and graph theory) as well a probabilities necessary for engineering disciplines (random variables, conditional probability, dependence betwee random variables, estimation and limit theorems).					
Learning outcomes	At the end of this learning unit, the student is able to :					
· ·	At the end of this course, the student will be able to:					
	- Understand and use basic counting concepts, including using recurrent formulas;					
	- Make the link between the concepts of counting and those of injection, surjection and bijection;					
	- Master the elements of modular arithmetic within the framework of an application, according to the time available					
	- Use the basic concepts of graph theory;					
	- Define, describe, explain and use the concepts of discrete and continuous, univariate and bivariate random variables:					
	- Measure the dependence between two random variables;					
	- Estimate the characteristics of random variables (expectation, variance, covariance,), and make the					
	difference between these parameters of the population and their estimation					
	- Use Chebycheff's inequality and limit theorems to characterize random variables					
	- Reformulate the textual statement of a problem in an unambiguous mathematical and probabilistic					
	formalism, using the appropriate theoretical concepts and tools;					
	- Solve an applied problem by following a deductive approach based on the correct and useful manipulation					
	of expressions; - Validate the internal consistency of the formalization and the solution of a probability calculation problem on the basis of the logical constraints induced by the theory.					
Evaluation methods	Written exam during the session. An oral examination may also be required, under specific individual circumstances.					
Teaching methods	The course will consist of:					
	- ex cathedra presentations which will present the concepts and tools on the basis of examples from the engineering world;					
	- exercise sessions (APE) aimed at systematically putting into practice the different notions structured during the course.					
	- case studies (APP) which will give the student the opportunity to discover certain notions through problems. Homework and mini-projects may also be offered and their evaluation will not contribute to the final grade. Examples related to sustainable development and transition will be evoked.					
Content	Discrete Mathematics:					
oomon.	o Combinatorics and counting					
	o Link between counting and injections, surjections and bijections					
	o Elements of graph theory					
	o Elements of modular arithmetic (including introduction to cryptography or					
	error correcting codes)					
	Probabilities					
	o Introduction to statistical data modeling and probability concepts in engineering contexts					
	o Events and probabilities, particularly in relation to combinatorics					
	o Random variables: discrete and continuous (univariate), including pdf and cdf					
	o Examples of random variables: Binomial, Poisson, Gaussian, exponential					

Université catholique de Louvain - Discrete mathematics and probability - en-cours-2024-lepl1108

o Mean, variance, covariance and correlation, expectation and conditional variance o Introduction to the estimation of these characteristic quantities o Law of Large Numbers and Central Limit Theorem The Moodle page of the course.
The Moodle page of the course.
0 0

Programmes containing this learning unit (UE)							
Program title	Acronym	Credits	Prerequisite	Learning outcomes			
Bachelor in Engineering	FSA1BA	5		Q			
Interdisciplinary Advanced Master in Science and Management of the Environment and Sustainable Development	ENVI2MC	5		Q			