UCLouvain

linfo1123

2024

Calculability, Logic and Complexity

30.0 tredits 30.0 II + 30.0 II Q2	5.00 credits	30.0 h + 30.0 h	Q2
-----------------------------------	--------------	-----------------	----

Teacher(s)	Deville Yves ;					
Language :	French					
Place of the course	Louvain-la-Neuve					
Prerequisites	This course assumes that the student acquired programming skills, algorithmic and programming language targeted in course LEPL1402 and discrete mathematics as seen in courses LINFO1114 or LEPL1108					
Main themes	 Theory of computability: problems and algorithms, computable and non-computable functions, reduction, undecidable problem classes (Rice's theorem), fixed point theorem, Church-Turing thesis Logic: logic of propositions and logic of predicates (syntax, semantics, proof, quantifiers, model checking, resolution) Computability Models: Turing Machine Theory of complexity: complexity classes, NP-completeness, Cook's theorem, NP-complete problem solving. 					
Learning outcomes	At the end of this learning unit, the student is able to :					
	Given the learning outcomes of the "Bachelor in Engineering" program, this course contributes to the development, acquisition and evaluation of the following learning outcomes:					
	• AA1.1, AA1.2 • AA2.4					
	Given the learning outcomes of the "Bachelor in Computer science" program, this course contributes to the development, acquisition and evaluation of the following learning outcomes:					
	• S1.I3, S1.G1 • S2.2					
	1 Students who have successfully completed this course will be able to					
	 recognize, explain and identify the limitations of information processing by a computer; explain and make good use of the main computability models by explaining their bases, differences and similarities; convert current language assertions into logical expressions using the syntax and semantics of the logic of propositions or predicates recognize, identify and apprehend non-calculable problems as well as intrinsically complex problems. 					
	Students will have developed methodological and operational skills. In particular, they will have developed their capacity to					
	• take a critical look at the performance and capacity of computer systems					
Evaluation methods	Different modes of evaluation can be organized: continuous assessment, graded work, participation, exam. The exam will be written, but in case of doubt on the part of the teacher as to the grade to be given to a student, the student may be questioned orally. Depending on the number of studentrs, the September exam can be an oral exam.					
Teaching methods	This course can be given in a variety of face-to-face and distance modalities. These may include lectures, readings, preparations, exercises, as well as individual or group work.					
Content	Introduction Enumerable sets Computability: fondamenbtal results Models of computability Propositional logic Introduction to algorithmic complexity Complexity classes					
Faculty or entity in charge	INFO					

Programmes containing this learning unit (UE)						
Program title	Acronym	Credits	Prerequisite	Learning outcomes		
Additionnal module in Mathematics	APPMATH	5		٩		
Specialization track in Computer Science	FILINFO	5		٩		
Bachelor in Mathematics	MATH1BA	5		٩		
Bachelor in Computer Science	SINF1BA	5		٩		
Mineure Polytechnique	MINPOLY	5		٩		