UCLouvain

Quantitative Energy Economics

5.00 credits

linma2415

2024

30.0 h + 22.5 h

Q2

Teacher(s)	Lété Quentin ;				
Language :	English > French-friendly				
Place of the course	Louvain-la-Neuve				
Prerequisites	 Fluency in English at the level of course LANGL1330. Optimization (linear programming, KKT conditions, duality) Microeconomic theory (not necessary but helpful) 				
Main themes	 Electricity market design Modeling of energy markets Operations research applications in energy markets Contemporary problems (renewable energy integration, demand response integration, capacity investment and risk management) 				
Learning outcomes	At the end of this learning unit, the student is able to :				
	With reference to the AA (Acquis d'Apprentissage) reference, this course contributes to the acquisition of the following learning outcomes:				
	• AA1.1, AA1.2, AA1.3 • AA2.2, AA2.5				
	At the end of the course, students will have learned to:				
	 explain the architecture of energy markets, ranging from real-time to forward markets formulate mathematical programming models that describe energy markets and regulatory interventions in these markets formulate mathematical programming models that describe risk management practices in the energy sector implement mathematical programming models that describe energy markets and risk management practices using AMPL provide economic interpretations to the results of mathematical programming models for energy markets 				
Evaluation methods	Written and/or oral exam Homework and/or project				
Teaching methods	 2 hours of lecture per week and 2 hours of training sessions per week. The course will also include a project and/ or homeworks (to be clarified during the first lecture). This course will address questions related to sustainable development and the transition through the discussion of the decarbonation of the electricity system, both during the lectures and the training sesions. 				
Content	 Mathematical background (duality) Power system and power market operations Competitive equilibrium models Short-term electricity market operations (economic dispatch, optimal power flow, unit commitment, reserves) Hedging risk through financial instruments Long-term energy system planning Integration of renewable energy into the electricity system 				
Inline resources	https://moodle.uclouvain.be/				
Bibliography	Notes on Moodle Textbook: Anthony Papavasiliou, "Optimization Models in Electricity Markets" Textbooks that can be used as a support (relevant sections will be mentioned on Moodle and during the lecture). Steven S. Stoft, "Power System Economics"				
Other infos	• Daniel S. Kirschen, Goran Strbac, "Power System Economics" None				

Faculty or entity in	МАР
charge	

Programmes containing this learning unit (UE)						
Program title	Acronym	Credits	Prerequisite	Learning outcomes		
Master [120] in Electro- mechanical Engineering	ELME2M	5		٩		
Master [120] in Mathematical Engineering	MAP2M	5		٩		
Master [120] in Energy Engineering	NRGY2M	5		٩		