30.0 h + 30.0 h

UCLouvain

Inline resources

2024

5.00 credits

Imapr2018

Q2

Rheology

Teacher(s)	Van Ruymbeke Evelyne ;					
Language :	English > French-friendly					
Place of the course	Louvain-la-Neuve					
Prerequisites	No specific prerequisites. Course mainly focused on the rheology of polymers. LMAPR2019.					
Main themes	Physical properties of viscoelastic materials Polymer flow properties and bonds with their composition Rheometry and polymers processing					
Learning outcomes	At the end of this learning unit, the student is able to : Contribution of the course to the program objectives Axis 1: 1.1, 1.2 Identify and implement the concepts, laws, reasoning applicable to a problem; develop and use the appropriate modeling and calculation tools to solve a problem. Axis 3: 3.1, 3.2 Search in the literature, summarize and present the current state of knowledge on a specific issue related to the rheology of polymer melts. Measuring and modeling the viscoelastic properties of polymer melts. Axis 4: 4.2, 4.4 Write reports on practical works and present a specific topic related to rheology by group of 2 students. Axis 5: 5.3, 5.4, 5.6 Communicating in a schematic form, Interpreting and presenting in an accurate way a new concept in rheology, based on a scientific publication.					
Evaluation methods	 Students will be assessed individually or in groups of 2. The evaluation will consist of three components: 1. Practical works: 3 reports to be submitted during the quadrimester on the programs (Matlab or Python) developed to determine the viscoelastic properties of molten polymers, the rheometry lab. (weighting: 20%) 2. Presentation: In groups of 2, students will prepare a presentation of 20 minutes dealing with a concept of rheology or processing (weighting: 20%) 3. Oral examination (weighting: 60%) If, for one part of the continuous evaluation process, a student does not abide to the methodological instructions defined on moodle by the teachers, including the use of online resources and student collaborations, all the continuous evaluation will obtain a grade of 0. 					
Teaching methods	 Ex-cathedra course Rheology concepts presented by students at the beginning of each class Program development (Matlab, Python) to determine viscoelastic properties of molten polymers and compare them to experimental data Rheometry laboratory 					
Content	 Properties of viscoelastic materials Rheometry Flow properties of a polymer in solution Flow properties of a polymer in the molten state - Linear polymers Flow properties of a polymer in the molten state - Branched polymers Flow properties of a polymer in the molten state - Influence of the composition Viscoelastic response of a polymer subjected to large deformations Viscoelastic response of Block copolymers Viscoelastic Properties of Gels and Reversible Polymeric Networks Viscoelastic Properties of soft Colloidal materials Viscoelastic Properties of Soft Colloidal Materials Polymer processing - I Polymer processing - II 					
Inline resources	Moodle website : https://moodleucl.uclouvain.be/course/view.php?id=8851					

Université catholique de Louvain - Rheology - en-cours-2024-Imapr2018

Bibliography	Slides, book chapters and articles available on Moodle
Faculty or entity in charge	FYKI

Programmes containing this learning unit (UE)							
Program title	Acronym	Credits	Prerequisite	Learning outcomes			
Master [120] in Chemical and Materials Engineering	KIMA2M	5		٩			
Master [120] in Biomedical Engineering	GBIO2M	5		٩			
Master [120] in Mechanical Engineering	MECA2M	5		هر			
Master [120] in Chemistry and Bioindustries	BIRC2M	5		٩			
Master [120] in Electro- mechanical Engineering	ELME2M	5		ø			
Master [120] in Mathematical Engineering	MAP2M	5		٩			
Master [120] in Physics	PHYS2M	5		٩			