UCLouvain

linfo1111

Analysis

The version you're consulting is not final. This course description may change. The final version will be published on 1st June.

7.00 credits 45.0 ii + 57.5 ii Qi	7.00 credits	45.0 h + 37.5 h	Q1
-----------------------------------	--------------	-----------------	----

Teacher(s)	Absil Pierre-Antoine ;Glineur François ;						
Language :	French						
Place of the course	Louvain-la-Neuve						
Prerequisites	This course assumes that the students already masters the skills in analysis (functions, derivatives and integrals) as expected at the end of secundary school.						
Main themes	The course focuses on						
	 understanding of mathematical tools and techniques based on a rigorous learning of concepts favored by highlighting their practical application, careful handling of these tools and techniques in the framework of applications. 						
	For most concepts, applications are selected from the other courses of the computer science program (eg economy).						
	Sets and Numbers						
	 sets (intersection, union, difference) Order and equivalence, Interval, upper bounds, lower bounds, extremes, absolute value, powers and roots 						
	Real functions of one variable						
	 injective, surjective, bijective functions, algebraic operations on functions (including graphic interpretation) first order functions, exponential, logarithmic and trigonometric functions Composition of functions and inverse functions 						
	Limits						
	• conditions to ensure that a limit exists, • limits to infinity						
	Continuous functions						
	• fundamental theorems of continuous functions,						
	Differentiable functions						
	 derivative at a point (including graphical interpretation) The Hospital's theorem, linear approximation of a function, maximum and minimum, encreasing of decreasing function (sign study) concavity and convexity, Taylor's development 						
	Integrals						
	 primitive, definite integrals (including graphic interpretation) undefinite integrals 						
	Functions of two variables						
	 notion and calculation of partial derivative graphical interpretation of the gradient interpretation and calculation of the Hessian matrix Intuitive introduction to the use of the Hessian matrix and gradient for a 2-variable function to determine critical points and their nature 						

Université catholique de Louvain - Analysis - en-cours-2025-linfo1111

	concept and calculation of double integrals For this last part, a mainly "tool" approach will be favored.				
Learning outcomes	At the end of this learning unit, the student is able to :				
	Given the learning outcomes of the "Bachelor in Copputer science" program, this course contributes to the development, acquisition and evaluation of the following learning outcomes:				
	•S1.G1 •S2.2				
	Students completing successfully this course will be able to				
	 Model real problems using the concepts of set, function, limit, derivative and integral; Solve real problems using computational techniques for limit, derivative and integral; Reason using correctly the mathematical notations and methods keeping in mind but exceeding a more intuitive understanding of the concepts; Model real problems using functions of 2 variables. 				
Evaluation methods	Assessments are carried out individually in writing, based on the learning outcomes listed above. A test is organized during the first term, shorter tests are organized during some exercise sessions, and a written exam is organized during each session. For the January session, the final grade is awarded on the basis of the tests (5 points out of 20) and the exam (15)				
	points out of 20). For the other two sessions, the grade is based on the exam only.				
Teaching methods	Lectures in a large auditorium, supervised exercise (APE) and problem (APP) sessions in small groups, possibly supplemented with writing assignments and online exercises.				
Content	Sets and numbers Real univariate functions Limits and continuity Derivatives (computation and applications) Optimization Taylor polynomial Integration (computation and applications) Differential equations Functions of two variables				
Inline resources	https://moodle.uclouvain.be/course/view.php?id=2798				
Bibliography	Mathématiques pour l'économie (5ème édition) par Knut Sydsæter, Peter Hammond, Arne Strøm et Andrés Carvajal, Pearson, 2020				
Faculty or entity in charge	INFO				

Programmes containing this learning unit (UE)							
Program title	Acronym	Credits	Prerequisite	Learning outcomes			
Bachelor in Computer Science	SINF1BA	7		Q.			