UCLouvain

lmapr2380

2025

Solid-fluid separation

The version you're consulting is not final. This course description may change. The final version will be published on 1st June.

5.00 credits	30.0 h + 22.5 h	Q1

Teacher(s)	Luis Alconero Patricia ;					
Language :	English > French-friendly					
Place of the course	Louvain-la-Neuve					
Main themes	Crystallization/precipitation techniques Other fluid-solid separation techniques (decantation, centrifugation, filtration including membrane filtration) Operating principles and methods for the selection, sizing and choice of equipment applicable to these uni operations.					
Learning outcomes	At the end of this learning unit, the student is able to :					
· ·	Contribution of the activity to the AA (Learning outcomes) referential :					
	• LO 1 : 1.1 • LO 2 : 2.1, 2.2, 2.3 • LO 3 : 3.1 • LO 4 : 4.1, 4.2 • LO 5 : 5.1, 5.2, 5.3, 5.4, 5.6					
	At the end of this course, the student will be able to: Understand the theoretical bases and practically apply the operating principles, as well as the selection, sizing and equipment choice methods applicable to unit operations for solid-fluid separation.					
Evaluation methods	Continuous evaluation throughout the year. You will be evaluated on: - An exam on filtration (concepts and exercises) Reports and presentations based on flipped classrooms.					
	- Reports of laboratory sessions. This continuous assessment will result in a single overall grade, communicated at the end of the course. Failure to comply with the methodological instructions defined on moodle, in particular with regard to the use of online resources or collaboration between students, for any work/assignment will result in an overall mark of 0 for the continuous assessment.					
	The use of generative AI such as ChatGPT, Consensus, Perplexity, etc. is tolerated for the search for information or clarification of concepts but its use is prohibited for the elaboration of reports, presentations or any material which is part of the course evaluation by the teacher. The student must declare on their honor that the AIs were not used.					
Teaching methods	Lectures, exercise sessions and flipped classes with the aim of applying the material and practicing on concrete examples.					
	Three laboratory sessions are planned (crystallization and desalination of sea water by reverse osmosis). The lectures will be given in remote (TEAMS) or face-to-face mode. The exercises and the laboratory will be face-to-face.					
Content	Content of the course: 1. Characterization of particles in suspension in liquids. Efficiency of separation 2. Filtration, pressure filtration, vacuum filtration, centrifugal filtration					
	 3. Coagulation-flocculation, gravity clarification, hydrocyclones, centrifugal sedimentation 4. Pressure membrane systems: MF, UF, NF, RO 5. Crystal engineering, process of crystal growth and crystallization 6. Membrane crystallization 					
	Lab1. Laboratory session on membrane crystallization Lab2. Laboratory session on conventional crystallization					
	Lab3. Laboratory session on pressure membrane systems (water desalination)					

Université catholique de Louvain - Solid-fluid separation - en-cours-2025-lmapr2380

Inline resources	The course content is available in Moodle.				
Bibliography	Copie des supports de présentation. Ces documents sont disponibles sur Moodle. Livres de référence :				
	 Separation Process Principles, Third Edition, Henley, Seader and Roper, Editor John Wiley & Sons, 2011 ISBN-13: 978-0470646113 Solid-Liquid Filtration and Separation Technology, Second Edition, A. Rushton, A. Ward, R. Holdich, Editor Wiley VCH, 2000, ISBN-13 978-3527296040 				
	 Solid/ Liquid Separation: Principles of Industrial Filtration, 1st Edition, S. Tarleton, R. Wakeman, Editor Elsevie Science, 2005, ISBN-13 978-1856174190 Fundamental Modeling of Membrane Systems: Membrane and Process Performance, 1st Edition, P. Luis, Edito Elsevier, 2018. ISBN- 9780128134832 				
Other infos	It is highly recommended to have attended Thermodynamics - Phase equilibrium course [LMAPR 1310] or similar				
Faculty or entity in charge	FYKI				

Programmes containing this learning unit (UE)							
Program title	Acronym	Credits	Prerequisite	Learning outcomes			
Master [120] in Chemical and Materials Engineering	KIMA2M	5		•			
Master [120] in Biomedical Engineering	GBIO2M	5		٩			