FYAP2M
2017 - 2018

Master [120] in Physical Engineering

At Louvain-la-Neuve - 120 credits - 2 years - Day schedule - In english
Dissertation/Graduation Project: YES - Internship: optional
Activities in other languages: YES
Activities on other sites: NO
Main study domain: Sciences de l'ingénieur et technologie
Organized by: Ecole Polytechnique de Louvain (EPL)
Programme code: fyap2m - Francophone Certification Framework: 7

Table of contents

Introduction .. 2
Teaching profile ... 3
 - Learning outcomes ... 3
 - Programme structure .. 4
 - Detailed programme ... 5
 - Programme by subject .. 5
 - Course prerequisites ... 15
 - The programme's courses and learning outcomes ... 15
Information ... 16
 - Admission .. 16
 - Teaching method ... 18
 - Evaluation .. 18
 - Mobility and/or Internationalisation outlook .. 18
 - Possible trainings at the end of the programme ... 18
 - Contacts ... 19
FYAP2M - Introduction

Introduction

The Master’s degree programme in Physical Engineering is multidisciplinary due to the in-depth study of various fields pertaining to physics and a wide range of industrial professions and specialisations as well as research based on advanced technologies.

This Master’s degree programme is founded on:

- Formal concepts associated with the field
- The use numerical simulation tools
- Experiments based on practical work

Your profile

You

- Have solid knowledge of physics and mathematics;
- Seek a programme that focuses on current technological and scientific issues and the national and international job market
- Want to participate in the design of high tech products: optics, thin strata, magnetic devices, transducers, sensors, nuclear tools, quantum physics, electronic materials, systems based on the interaction of radiation materials or objects produced from nanotechnologies

Your future job

Civil engineers are present in all industrial sectors: the chemical industry, pharmaceuticals and food production, electronics and telecommunication industry, energy, metallurgy, aeronautics, design and civil engineering, large scale distribution, banking or consulting services, nanotechnologies and medical technology, etc.

They play a role as researchers and developers overseeing production or management and holding positions in marketing and sales (of high tech products).

We find them in finance departments, information technology fields, quality control, the public sector, higher education and the Ministry of equipment and transport (www.fabi.be)

Your programme

This Master’s degree offers:

- Solid training applied physics
- An interdisciplinary approach at the interface between physics and material sciences
- Experience in laboratories and with research projects
- Exposure to the industrial sector: factory visits, internships, projects carried out in companies
- The opportunity to complete coursework abroad

This Master’s degree programme consists of compulsory classes that aim to round out basic knowledge as well as a large selection of elective courses grouped into five majors that may potentially be completed by classes taken at UCL.
Learning outcomes

Physical engineers master the physical aspects of how objects function and their interaction with the environment (waves, light, ions, electric and magnetic fields, temperature gradients). Physical engineers have dual training in experiments and simulation. They are capable of using theories and formal representations of objects thanks to numerical simulation tools. They are also capable of carrying out laboratory-based experiments. Their comprehensive understanding of physical properties allows them to make the connection between properties on an atomic scale with those that are macroscopic.

Due to the in-depth study of different fields of physics (material physics, optics, electromagnetics, electronics, mechanics, quantum physics, etc.), the Master’s degree programme in physical engineering (FYAP) prepares students for numerous jobs and specialisations in the industrial sector as well as participation in research-based technological activities.

Physical engineers are called on to resolve technological problems that are often complex and multidisciplinary in nature, linked to the design and creation of materials, devices and systems. They can act as an interface between different professions that use functional materials. They are called on to innovate in a specific technological environment.

Physical engineers systematically take into account constraints, values, rules (both legal and ethical) and economics. Their solid scientific background allows them to be autonomous enough to manage complex industrial projects. They are comfortable working as part of a team and communicating effectively even in English.

On successful completion of this programme, each student is able to:

1. Demonstrating their mastery of a solid body of knowledge in basic engineering sciences allowing them to understand and solve problems related to technological and industrial applications in the physical sciences.
 1.1 Identify and use concepts, laws, and appropriate reasoning to solve a given problem (for example, identifying laws and materials to go from LED to white light; designing energy converters based on thermoelectric elements; creating materials and devices to store and/or transfer information; designing photovoltaic panels with optimal output.)
 1.2 Identify and use appropriate modelling and calculation tools to solve problems.
 1.3 Verify solutions to a given problem.

2. Organise and carry out an engineering process in a high-tech field that requires the use of fundamental tools and concepts in order to solve a particular problem.
 2.1 Analyse a problem and formulate a specifications note.
 2.2 Model the problem and design one or more original technical solutions in response to the specifications note (for example, the optimisation and/or combination of materials for thermal insulation), develop measures for electrical and thermal classification of a given material, choose materials for light emission (LEDs) or the creation of photovoltaic panels.
 2.3 Evaluate and classify solutions in terms of all the figures in specifications notes: efficiency, feasibility, quality, ergonomics, and security in the professional environment.
 2.4 Implement and test a solution through a mock-up or a prototype and/or a numerical model.
 2.5 Make recommendations to improve the operational character of a solution under consideration.

3. Organise and carry out a research project to understand a new technological or industrial problem in different areas of applied physics or high tech engineering.
 3.1 Document and summarize the existing body of knowledge.
 3.2 Suggest a model and/or an experimental device allowing for the simulation and testing of hypotheses related to the phenomenon being studied.
 3.3 Write a summary report explaining the potentialities of the theoretical and/or technical innovation resulting from the research project.

4. Contribute as part of a team to the planning and completion of a project while taking into account its objectives, allocated resources, and constraints.
 4.1 Frame and explain the project’s objectives (in terms of performance indicators) while taking into account its issues and constraints (resources, budget, deadlines).
 4.2 Collaborate on a work schedule, deadlines and roles, for example the division of labour among students.
 4.3 Work in a multidisciplinary environment with peers holding different points of view; manage any resulting disagreement or conflicts.
 4.4 Make team decisions (whether they be about technical solutions or the division of labour).

5. Communicate effectively (speaking or writing in French or a foreign language) with the goal of carrying out assigned projects.
5.1 Identify the needs of the client or the user: question, listen and understand all aspects of their request and not just the technical aspects (for example, select the best-suited equipment for the material concerned, select the best material according to the desired functionalities and systems integration).

5.2 Present your arguments and convince your interlocutors (technicians, colleagues, clients, superiors) of your technological choices by adopting their language.

5.3 Communicate through graphics and diagrams: interpret a diagram, present results, structure information.

5.4 Read and analyse different technical documents, plans, specification notes: progress of physical properties in function of materials, temperature, mechanical limits or external fields, phase diagrams, band structures, etc.

5.5 Draft documents that take into account contextual requirements and social conventions.

5.6 Make a convincing oral presentation using modern communication techniques.

6. Demonstrate rigor, openness and critical and ethical awareness in your work: using the technological and scientific innovations at your disposal validate the socio-technical relevance of a hypothesis or a solution.

6.1 Rigorously apply the field’s standards (terms, units of measure, quality standards and security).

6.2 Find solutions that go beyond strictly technical issues by considering sustainable development and the socio-economic ethics of a project (for example, “life cycle analysis”).

6.3 Demonstrate critical awareness of a technical solution in order to verify its robustness and minimize the risks that may occur during implementation (this skill is mainly developed through the graduation project as either a critical analysis of manufacturing and classification techniques or a discussion of research perspectives and development as part of a Master’s thesis).

6.4 Evaluate oneself and independently develop necessary skills for “lifelong learning” (this skill is mainly developed as part of class projects requiring bibliographic research).

Programme structure

The student’s programme includes:

- A common core curriculum (30 credits)
- A final specialisation (30 credits)
- One of more of the major courses or elective courses listed below.

The graduation project is normally completed in the second year. However, students may, depending on the nature of their project, choose to take their classes in the first or second year so long as their course prerequisites allow it. This is particularly the case for students completing part of their program abroad.

If during the student's previous studies, he or she has already taken a course that is part of the programme (either required or elective) or they have participated in an academic activity that is approved by the programme commission, the student may count this activity toward their graduation requirements (but only if they respect programme rules). The student will also verify that he/she has obtained the minimum number of credits requested for the approval of their diploma as well as for the approval of their major (in order to include their academic distinctions in the diploma supplement).

These types of programmes will be submitted for approval by the relevant Master's degree programme commission.

For a programme-type, and regardless of the focus, options/or elective courses selected, this master will carry a minimum of 120 credits divided over two annual units, corresponding to 60 credits each.

> Core courses master of physical engineering [en-prog-2017-fyap2m-flyap220t.html]

> Professional focus [en-prog-2017-fyap2m-flyap200s]

Options courses

> Majors for the Master's degree in physics [en-prog-2017-fyap2m-flyap902r.html]
 > Major in Advanced Engineering Physics [en-prog-2017-fyap2m-flyap221o.html]
 > Major in nanotechnology [en-prog-2017-fyap2m-flyap225o.html]
 > Major advanced electronic materials and devices [en-prog-2017-fyap2m-flyap223o.html]
> Major in business creation and management [en-prog-2017-fyap2m-flyap901r.html]
 > Major in small and medium sized business creation [en-prog-2017-fyap2m-flyap226o.html]
 > Major in Business risks and opportunities [en-prog-2017-fyap2m-flyap227o.html]
> Elective courses [en-prog-2017-fyap2m-flyap854o.html]
FYAP2M Detailed programme

Programme by subject

CORE COURSES [45.0]

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Faculty</th>
<th>Credits</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFYAP2990</td>
<td>Graduation project/End of studies project</td>
<td>Christian Bailly (coord.)</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>LELEC1755</td>
<td>ELECTRICITY : ADVANCED TOPICS</td>
<td>Denis Flandre Danielle Janvier Claude Oestges</td>
<td>30h+30h</td>
<td>1q</td>
</tr>
</tbody>
</table>

LECLE 1755 is not compulsory unless it was not taken in the 1st cycle.

Religion courses for students in natural sciences (2 credits)

For students who did their bachelor at UCL

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Faculty</th>
<th>Credits</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTECO2100</td>
<td>Questions of religious sciences: Biblical readings</td>
<td>Hans Ausloos</td>
<td>2</td>
<td>1q</td>
</tr>
<tr>
<td>LTECO2200</td>
<td>Questions of religious sciences: reflections about Christian faith</td>
<td>Dominique Martens</td>
<td>2</td>
<td>2q</td>
</tr>
<tr>
<td>LTECO2300</td>
<td>Questions of religious sciences: questions about ethics</td>
<td>Marcela Lobo Bustamante</td>
<td>2</td>
<td>1q</td>
</tr>
</tbody>
</table>

Transversal skills and professional contacts

If the student takes the internship LFSA2995 the maximum authorized credits are 26

De 3 à 21 credits parmi

PROFESSIONAL FOCUS [30.0]

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Faculty</th>
<th>Credits</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMAPR2014</td>
<td>Physics of Functional Materials</td>
<td>Xavier Gonze Luc Piraux Gian-Marco Rignanese</td>
<td>37.5h+22.5h</td>
<td>1q</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Faculty</th>
<th>Credits</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMAPR2451</td>
<td>Atomistic and nanoscopic simulations</td>
<td>Jean-Christophe Charlier Xavier Gonze Aurélien Lherbier (compenses Jean-Christophe Charlier) Gian-Marco Rignanese</td>
<td>30h+30h</td>
<td>2q</td>
</tr>
<tr>
<td>Code</td>
<td>Course Description</td>
<td>Instructor(s)</td>
<td>Credits</td>
<td>Year</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>LMAPR2471</td>
<td>Transport phenomena in solids and nanostructures</td>
<td>Jean-Christophe Charlier and Aurélien Lherbier (compensates Jean-Christophe Charlier) and Luc Piraux</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>LMAPR2481</td>
<td>Deformation and fracture of materials</td>
<td>Thomas Pardoen</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>LPHY2141</td>
<td>Optics and lasers</td>
<td>Alain Cornet and Clément Lauzin</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>LMAPR2019A</td>
<td>Polymer Science and Engineering-Physics</td>
<td>Sophie Demouster, Alain Jonas, and Evelyne Van Ruymbeke</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>LCHM2261B</td>
<td>Polymer chemistry and physical chemistry (part 2 : Polymer physical chemistry)</td>
<td>Jean-François Gohy and Alain Jonas</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
OPTIONS

The student may select

Majors for the Master's degree in physics

- Major in Advanced Engineering Physics [en-prog-2017-fyap2m-fyap221o]
- Major in nanotechnology [en-prog-2017-fyap2m-fyap225o]
- Major advanced electronic materials and devices [en-prog-2017-fyap2m-fyap223o]

Major in business creation and management

- Major in small and medium sized business creation [en-prog-2017-fyap2m-fyap226o]
- Major in Business risks and opportunities [en-prog-2017-fyap2m-fyap227o]
- Elective courses [en-prog-2017-fyap2m-fyap954o]

MAJORS FOR THE MASTER'S DEGREE IN PHYSICS

MAJOR IN ADVANCED ENGINEERING PHYSICS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Periodicity</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPHY2140</td>
<td>Photons, atoms and molecules</td>
<td>André Nauts</td>
<td>5</td>
<td>1q</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xavier Urbain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPHY2242</td>
<td>Experimental methods in atomic and molecular physics</td>
<td>Clément Lauzin</td>
<td>5</td>
<td>2q</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xavier Urbain</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Optics and photonics

Experimental methods

Numerical simulations

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Periodicity</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPHY2245</td>
<td>Lasers and applications</td>
<td>Clément Lauzin</td>
<td>6</td>
<td>2q</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPHY2246</td>
<td>Vacuum physics and techniques</td>
<td>Benoît Hackens Sorin Melinte</td>
<td>5</td>
<td>1q</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPHY2273</td>
<td>Cryophysique et questions spéciales de supraconductivité</td>
<td>Vincent Bayot Luc Piraux</td>
<td>6</td>
<td>1q</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPHY2371</td>
<td>Experimental methods</td>
<td>Krzysztof Piotrzkowski</td>
<td>4</td>
<td>1q</td>
<td></td>
</tr>
</tbody>
</table>

Numerical simulations

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Periodicity</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMAPR2482</td>
<td>Plasticity and metal forming</td>
<td>Laurent Delannay Thomas Pardoen</td>
<td>5</td>
<td>2q</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMECA2300</td>
<td>Advanced Numerical Methods</td>
<td>Philippe Chatelain Christophe Craeye Vincent Legat Jean-François Remacle</td>
<td>5</td>
<td>2q</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPHY2371</td>
<td>Numerical Simulation in Physics</td>
<td>Michel Crucifix Bernard Piraux</td>
<td>5</td>
<td>1q</td>
<td></td>
</tr>
</tbody>
</table>

Click on the course title to see detailed informations (objectives, methods, evaluation...)
Fundamental concepts of physics

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Instructor</th>
<th>Hours</th>
<th>Credits</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPHY1223</td>
<td>Special Relativity</td>
<td>Jean-Marc Gérard</td>
<td>22.5h + 15h</td>
<td>4</td>
<td>1q</td>
</tr>
<tr>
<td>LPHY1331</td>
<td>Elementary nuclei and particles</td>
<td>Vincent Lemaitre</td>
<td>30h + 22.5h</td>
<td>4</td>
<td>2q</td>
</tr>
<tr>
<td>LPHY2120</td>
<td>Quantum Field Theory</td>
<td>Jean-Marc Gérard</td>
<td>22.5h</td>
<td>4</td>
<td>1q</td>
</tr>
</tbody>
</table>
MAJOR IN NANOTECHNOLOGY

As with the Master’s degree programmes in electrical, electromechanical, physical, chemical and material sciences, the objective of this major is to introduce students to physics and the simulation of materials and devices used in the field of micro and nano-electronics, to the properties and methods associated with the manufacturing and classification of micro and nano-structures; to the ways in which nano-devices function as well as the development and integration of organic elements into nano-systems.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Hours</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMAPR2015</td>
<td>Physics of Nanostructures</td>
<td>5</td>
<td>37.5</td>
<td>1</td>
</tr>
<tr>
<td>MMAPR2451</td>
<td>Atomistic and nanoscopic simulations</td>
<td>5</td>
<td>30+30</td>
<td>2</td>
</tr>
<tr>
<td>MMAPR2471</td>
<td>Transport phenomena in solids and nanostructures</td>
<td>5</td>
<td>30+30</td>
<td>2</td>
</tr>
<tr>
<td>LPHY2273</td>
<td>Cryophysique et questions spéciales de supraconductivité</td>
<td>5</td>
<td>45+15</td>
<td>1</td>
</tr>
</tbody>
</table>

To enrol in this major, students should have already taken a physical materials class such as MMAPR1492. The classes MMAPR2451 and 2471 are not open to students in the Master’s degree programme in physical engineering.

Nano-structures and the physics of nano-materials

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Hours</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LELEC2541</td>
<td>Advanced Transistors</td>
<td>5</td>
<td>30+30</td>
<td>2</td>
</tr>
<tr>
<td>LELEC2550</td>
<td>Special electronic devices</td>
<td>5</td>
<td>30+30</td>
<td>1</td>
</tr>
<tr>
<td>LELEC2710</td>
<td>Nanoelectronics</td>
<td>5</td>
<td>30+30</td>
<td>1</td>
</tr>
</tbody>
</table>

To enrol in these courses it is recommended that students have already taken a course in physical electronics or in semiconductor devices such as ELEC 1330 or ELEC 1755 or similar.

Nano and micro semi-conductor devices

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Hours</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LELEC2560</td>
<td>Micro and Nanofabrication Techniques</td>
<td>5</td>
<td>30+30</td>
<td>2</td>
</tr>
<tr>
<td>LELEC2895</td>
<td>Design of micro and nanosystems</td>
<td>5</td>
<td>30+30</td>
<td>1</td>
</tr>
</tbody>
</table>

Micro and nano-engineering
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Lecturers</th>
<th>Credits</th>
<th>Hours</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMAPR2012</td>
<td>Macromolecular Nanotechnology</td>
<td>Sophie Demoustier, Karine Glinel (compensates Bernard Nysten), Karine Glinel, Jean-François Gohy, Bernard Nysten (coord.)</td>
<td>5</td>
<td>45h + 15h</td>
<td>2q</td>
</tr>
<tr>
<td>LMAPR2631</td>
<td>Surface Analysis</td>
<td>Arnaud Delcorte, Bernard Nysten</td>
<td>5</td>
<td>30h + 15h</td>
<td>2q</td>
</tr>
</tbody>
</table>
MAJOR ADVANCED ELECTRONIC MATERIALS AND DEVICES

- **Mandatory**
 - courses not taught during 2017-2018
 - courses taught during 2017-2018

- **Optional**
 - courses not taught during 2017-2018
 - periodic courses taught during 2017-2018

De 15 à 30 credits parmi

Compulsory courses in advanced electronic materials and devices

Student choose at least 5 credits among:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Hours</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LELEC2541</td>
<td>Advanced Transistors</td>
<td>Vincent Bayot (coord.) Denis Flandre Jean-Pierre Raskin</td>
<td>5</td>
<td>30+30h</td>
<td>2q</td>
</tr>
<tr>
<td>LELEC2550</td>
<td>Special electronic devices</td>
<td>Vincent Bayot (coord.) Denis Flandre Laurent Francis Jean-Pierre Raskin</td>
<td>5</td>
<td>30+30h</td>
<td>1q</td>
</tr>
<tr>
<td>LELEC2700</td>
<td>Microwaves</td>
<td>Isabelle Huynen Danielle Janvier Danielle Janvier (compensates Isabelle Huynen)</td>
<td>5</td>
<td>30+30h</td>
<td>1q</td>
</tr>
<tr>
<td>LELEC2895</td>
<td>Design of micro and nanosystems</td>
<td>Laurent Francis (coord.) Thomas Pardoen Jean-Pierre Raskin</td>
<td>5</td>
<td>30+30h</td>
<td>1q</td>
</tr>
</tbody>
</table>

Elective courses in advanced electronic materials and devices

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Hours</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LELEC2560</td>
<td>Micro and Nanofabrication Techniques</td>
<td>Laurent Francis Benoit Hackens Jean-Pierre Raskin</td>
<td>5</td>
<td>30+30h</td>
<td>2q</td>
</tr>
<tr>
<td>LELEC2580</td>
<td>Design of RF and microwave communication circuits</td>
<td>Christophe Craeye Danielle Janvier</td>
<td>5</td>
<td>30+30h</td>
<td>2q</td>
</tr>
<tr>
<td>LELEC2710</td>
<td>Nanoelectronics</td>
<td>Vincent Bayot (coord.) Denis Flandre Laurent Francis Jean-Pierre Raskin</td>
<td>5</td>
<td>30+30h</td>
<td>1q</td>
</tr>
<tr>
<td>LELEC2811</td>
<td>Instrumentation and sensors</td>
<td>David Bol Laurent Francis</td>
<td>5</td>
<td>30+30h</td>
<td>1q</td>
</tr>
<tr>
<td>LMAPR2015</td>
<td>Physics of Nanostructures</td>
<td>Jean-Christophe Charlier Xavier Gonze Aurélien Lherbier (compensates Xavier Gonze) Aurélien Lherbier (compensates Jean-Christophe Charlier) Luc Piraux</td>
<td>5</td>
<td>37.5h +22.5h</td>
<td>1q</td>
</tr>
<tr>
<td>LMAPR2020</td>
<td>Materials Selection</td>
<td>Christian Bailly Thomas Pardoen</td>
<td>5</td>
<td>30h +22.5h</td>
<td>2q</td>
</tr>
<tr>
<td>LMECA2300</td>
<td>Advanced Numerical Methods</td>
<td>Philippe Chatelain Christophe Craeye Vincent Legat Jean-François Remacle</td>
<td>5</td>
<td>30+30h</td>
<td>2q</td>
</tr>
<tr>
<td>LPHY2141</td>
<td>Optics and lasers</td>
<td>Alain Cornet Clement Lauzin</td>
<td>5</td>
<td>30+10h</td>
<td>1q</td>
</tr>
<tr>
<td>LPHY2245</td>
<td>Vacuum physics and techniques</td>
<td>Benoit Hackens Sorin Melinte</td>
<td>5</td>
<td>30</td>
<td>1q</td>
</tr>
</tbody>
</table>
MAJOR IN BUSINESS CREATION AND MANAGEMENT

MAJOR IN SMALL AND MEDIUM SIZED BUSINESS CREATION

In keeping with most of the Masters’ degrees in civil engineering, the goal of this major is to familiarise the civil engineering student with the specifics of small and medium sized businesses, entrepreneurship, and business development in order to develop the necessary abilities, knowledge and tools to create a business. This major is reserved for a small number of students and selection is based on a written application and individual interview. The written application must be submitted before the start of the academic year for Master’s 1.

Applications may be sent to:
Secrétariat CPME-Place des Doyens, 1
1348 Louvain-la-Neuve (tel. 010/47 84 59)

Selected students will replace their Master’s thesis in the common core curriculum with a thesis related to business creation (the number of credits remaining the same).

Further information about this major may be found at http://www.uclouvain.be/cpme. This major may not be taken at the same time as a major in management. Students in this major may choose De 20 à 25 credits parmi

Required courses for the major in small and medium sized businesses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCPME2001</td>
<td>Entrepreneurship Theory (in French)</td>
<td>Frank Janssen</td>
<td>5</td>
<td>1q x</td>
</tr>
<tr>
<td>LCPME2002</td>
<td>Managerial, legal and economic aspects of the creation of a company (in French)</td>
<td>Yves De Cordt, Marine Falize</td>
<td>5</td>
<td>1q x</td>
</tr>
<tr>
<td>LCPME2003</td>
<td>Business plan of the creation of a company (in French)</td>
<td>Frank Janssen</td>
<td>5</td>
<td>2q x</td>
</tr>
<tr>
<td>LCPME2004</td>
<td>Advanced seminar on Enterpreneurship (in French)</td>
<td>Roxane De Hoe (compensates Frank Janssen) Frank Janssen</td>
<td>5</td>
<td>2q x</td>
</tr>
</tbody>
</table>

Prerequisite CPME courses

Student who have not taken management courses during their previous studies must enroll in LCPME2000.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCPME2000</td>
<td>Venture creation financement and management I</td>
<td>Yves De Rongé, Olivier Giacomin</td>
<td>5</td>
<td>1q x</td>
</tr>
</tbody>
</table>
MAJOR IN BUSINESS RISKS AND OPPORTUNITIES

As with most of the civil engineering Master’s degree programmes, the objective of this major is to familiarise the student with the basic principles of business management.

This major may not be combined with the major in Small and medium sized business creation. Students may select De 16 à 20 credits parmi

De 3 à 5 credits parmi

Alternative to the major in business risks and opportunities for computer science students

Computer science students who have already taken courses in this field while pursuing their Bachelor's degree may choose between 16-20 credits from the courses offered in the management minor for computer sciences.
ELECTIVE COURSES

- **Mandatory**
- **Optional**
- **Courses not taught during 2017-2018**
- **Periodic courses not taught during 2017-2018**
- **Activity with requisites**

Click on the course title to see detailed informations (objectives, methods, evaluation...)

De 3 à 21 credits parmi

Compétences transversales et contact avec l’entreprise

L’étudiant choisit minimum 3 crédits parmi un stage, un ou plusieurs cours de l’option "Enjeux de l’entreprise", l’option "CPME", une UE d’activité professionnelle liée à la discipline

Internship

- **LFSA2995** Company Internship
 Jean-Pierre Raskin
 30h
 10 Credits
 1 + 2q
 x
 x

- **LFSA2996** Company Internship
 5 Credits
 1 + 2q
 x
 x

Professional integration activity specific to the program

- **LMECA2711** Quality management and control.
 Nicolas Bronchart
 30h+30h
 5 Credits
 2q
 x
 x

Communication

L’étudiant choisit maximum 8 crédits visant le développement de ses compétences de communication

Languages

Students may select from any language course offered at the ILV. Special attention is placed on the following seminars in professional development:

- **LALLE2500** Professional development seminar German
 Caroline Klein
 Ann Rinder (coord.)
 30h
 3 Credits
 1 + 2q
 x
 x

- **LALLE2501** Professional development seminar German
 Caroline Klein
 Ann Rinder (coord.)
 30h
 5 Credits
 1 + 2q
 x
 x

- **LESPA2600** Vocational Induction Seminar - Spanish (B2.2/C1)
 Paula Lorente Fernandez (coord.)
 30h
 3 Credits
 1q
 x
 x

- **LESPA2601** Vocational Induction Seminar - Spanish (B2.2/C1)
 Paula Lorente Fernandez (coord.)
 30h
 5 Credits
 1q
 x
 x

- **LNEER2500** Seminar of Entry to professional life in Dutch - Intermediate level
 Isabelle Demeulemaere (coord.)
 Mariken Smit
 30h
 3 Credits
 1 ou 2q
 x
 x

- **LNEER2600** Seminar of entry to professional life in Dutch - Upper-intermediate level
 Isabelle Demeulemaere (coord.)
 30h
 3 Credits
 1 ou 2q
 x
 x

Group dynamics

- **LFSA2351A** Group dynamics
 Piotr Sobieski (coord.)
 Vincent Wertz (coord.)
 15h+30h
 3 Credits
 1q
 x
 x

- **LFSA2351B** Group dynamics
 Piotr Sobieski (coord.)
 Vincent Wertz (coord.)
 15h+30h
 3 Credits
 2q
 x
 x

Autre UE non disciplinaires

L’étudiant peut proposer maximum 8 crédits d’ouverture vers d’autres disciplines (maximum un cours BEST ou des UE hors EPL).

max=8 credits parmi
Course prerequisites

A document entitled en-prerequis-2017-fyap2m.pdf specifies the activities (course units - CU) with one or more pre-requisite(s) within the study programme, that is the CU whose learning outcomes must have been certified and for which the credits must have been granted by the jury before the student is authorised to sign up for that activity.

These activities are identified in the study programme: their title is followed by a yellow square.

As the prerequisites are a requirement of enrolment, there are none within a year of a course.

The prerequisites are defined for the CUs for different years and therefore influence the order in which the student can enrol in the programme's CUs.

In addition, when the panel validates a student's individual programme at the beginning of the year, it ensures the consistency of the individual programme:
- It can change a prerequisite into a corequisite within a single year (to allow studies to be continued with an adequate annual load);
- It can require the student to combine enrolment in two separate CUs it considers necessary for educational purposes.

For more information, please consult regulation of studies and exams.

The programme's courses and learning outcomes

For each UCL training programme, a reference framework of learning outcomes specifies the competences expected of every graduate on completion of the programme. You can see the contribution of each teaching unit to the programme's reference framework of learning outcomes in the document "In which teaching units are the competences and learning outcomes in the programme's reference framework developed and mastered by the student?"

The document is available by clicking this link after being authenticated with UCL account.
Admission

General and specific admission requirements for this program must be satisfied at the time of enrolling at the university.

This programme is taught in English with no prerequisite in French. The student is supposed to have at least a B2 level in the European Framework of Reference.

- University Bachelors
- Non university Bachelors
- Holders of a 2nd cycle University degree
- Holders of a non-University 2nd cycle degree
- Adults taking up their university training
- Personalized access

University Bachelors

<table>
<thead>
<tr>
<th>Diploma</th>
<th>Special Requirements</th>
<th>Access</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCL Bachelors</td>
<td></td>
<td>Direct access</td>
<td>Students who have neither major nor minor in the field of their civil engineering Master’s degree may have an adapted master programme.</td>
</tr>
<tr>
<td>Bachelor in Engineering</td>
<td></td>
<td>Direct access</td>
<td>Students with a Bachelor’s degree in engineering sciences who have not taken the equivalent of a minor in the field of their civil engineering master degree may have an adapted master programme.</td>
</tr>
</tbody>
</table>

Others Bachelors of the French speaking Community of Belgium

<table>
<thead>
<tr>
<th>Diploma</th>
<th>Special Requirements</th>
<th>Access</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor in engineering</td>
<td></td>
<td>Direct access</td>
<td>Students who have no specialisation in the field of their civil engineering master degree may have an adapted master programme with up to 60 additional credits.</td>
</tr>
</tbody>
</table>

Bachelors of the Dutch speaking Community of Belgium

<table>
<thead>
<tr>
<th>Diploma</th>
<th>Special Requirements</th>
<th>Access</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor in engineering</td>
<td></td>
<td>Direct access</td>
<td>Students who have neither major nor minor in the field of their civil engineering Master’s degree may have an adapted master programme.</td>
</tr>
</tbody>
</table>

Foreign Bachelors

Non university Bachelors

Diploma	Access	Remarks
> Find out more about links to the university

Holders of a 2nd cycle University degree

<table>
<thead>
<tr>
<th>Diploma</th>
<th>Special Requirements</th>
<th>Access</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Licenciés"</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Masters

<table>
<thead>
<tr>
<th>Masters in engineering</th>
<th>Access</th>
</tr>
</thead>
</table>

Direct access

Holders of a non-University 2nd cycle degree

<table>
<thead>
<tr>
<th>Diploma</th>
<th>Access</th>
<th>Remarks</th>
</tr>
</thead>
</table>

Adults taking up their university training

> See the website Valorisation des acquis de l'expérience

It is possible to gain admission to all masters courses via the validation of professional experience procedure.

Personalized access

Reminder: all Masters (apart from Advanced Masters) are also accessible on file.

The first step of the admission procedure requires to submit an application online: https://uclouvain.be/en/study/inscriptions/futurs-etudiants.html

Selection criteria are summarized here.

Admission and Enrolment Procedures for general registration
Teaching method

Methods that promote multidisciplinary studies
The Master’s degree programme in physical engineering is interdisciplinary because acts as an interface between physics and materials science. Its versatile foundation exposes students to the wide scope of applied physics from practical training and cutting edge research to majors in the main branches of physics and materials science: nano-technologies, materials science, photovoltaics, fundamental and applied physics and light-matter interaction. Students also have the possibility of studying management thanks to majors in management and small and medium sized business creation. The programme includes a significant portion of the classes with the PHYS (or PHY) designation as well as MATH, INMA and MECA classes, which is evidence of the programme’s multidisciplinary nature. Finally students are allowed to select up to 40 credits of elective courses offered as part of the programmes in natural sciences or medicine at UCL and up to 6 credits of courses in human sciences, which allows for tailor made course schedules.

Various teaching strategies
The pedagogy used in the Master’s degree programme in physical engineering is consistent with that of the Bachelor’s degree programme in engineering sciences: active learning, an equal mix of group work and individual work, and emphasis on the development of non-technical skills. A major characteristic of the programme is the immersion of students in professors’ research laboratories (and at times teaching laboratories, case studies, projects, theses) that expose students to advanced methods used in the discipline and allows them to learning by questioning, a process inherent in the research process. An optional 9-week internship of 10 credits (or 5 credits if completed alongside a thesis) places students at the centre of research and allows them to develop their skills through their contact with the professional world.

Diverse learning situations
Students will be exposed to varied pedagogical methods: lectures, projects, exercise tutorials, problem-solving sessions, case studies, experimental laboratories, computer simulations, internships in industry or research, graduation projects, group work, individual work, conferences given by outside researchers, exposure to cutting edge research, etc. This variety of teaching techniques allows students to learn in an iterative and progressive manner all the while developing their autonomy as well as their organisational, time management and communication skills.

Evaluation

The evaluation methods comply with the regulations concerning studies and exams. More detailed explanation of the modalities specific to each learning unit are available on their description sheets under the heading “Learning outcomes evaluation method”. Evaluation methods conform to the rules used to evaluate coursework and exams. Further details about the methods specific to each academic department may be found in their respective evaluation descriptions (“Evaluating students’ knowledge”). Student work is evaluated according to University rules (see the rules for evaluating coursework and exams) namely written and oral exams, laboratory exams, individual or group work, public presentations of projects and theses defences. Professors provide details about evaluation methods used in their courses at the beginning of each semester.

For more information on evaluation methods, students may consult the relevant evaluation descriptions.

To obtain a passing grade, the marks received for the teaching units are offset by their respective credits.

Mobility and/or Internationalisation outlook

Since its creation, the Louvain School of Engineering (EPL) has participated in diverse exchange programs that were put into place at the European level and beyond.

Possible trainings at the end of the programme

Master’s degree programmes
The Master’s degree programme in nanotechnology and the Master’s degree in nuclear engineering are natural continuations of the M.A. in physical engineering.

Doctoral degree programmes
The Master’s degree programme in physical engineering prepares students for doctoral programmes. The programme’s professors are members of the MAIN (“Materials, Interfaces and Nanotechnology) doctoral programme and interested students are welcome to pursue a doctoral degree.

UCL Master’s degrees (about 60) are accessible to UCL Master’s degree holders
For example:

- The Master’s degree (120) in sciences and environmental management and the Master’s degree (60) in sciences and environmental management (automatic admission with possible complementary coursework)
- Different Master’s degree programmes in management (automatic admission based on written application): see this list
- The Master’s degree (60) in information and communication at Louvain-la-Neuve or the Master’s degree (60) in information and communication at Mons

Contacts

Curriculum Management

Entity
Structure entity
Denomination
Faculty
Sector
Acronym
Postal address

Academic Supervisor
• Christian BAILLY

Jury
• Président du Jury : Jean-Didier LEGAT
• Secrétaire du Jury : Luc PIRAUX

Usefull Contacts
• Mme : Vinciane Gandibleux (Tel: 010 47 96 23)