KIMA2M
2017 - 2018

Master [120] in Chemical and Materials Engineering

At Louvain-la-Neuve - 120 credits - 2 years - Day schedule - In english
Dissertation/Graduation Project: YES - Internship: optional
Activities in other languages: YES
Activities on other sites: optional
Main study domain: Sciences de l'ingénieur et technologie
Organized by: Ecole Polytechnique de Louvain (EPL)
Programme acronym: kima2m - Francophone Certification Framework: 7

Table of contents

Introduction ... 2
Teaching profile ... 3
- Learning outcomes ... 3
- Programme structure .. 4
- Detailed programme ... 5
 - Programme by subject .. 5
 - Course prerequisites ... 18
- The programme's courses and learning outcomes 18
Information ... 19
 - Admission .. 19
 - Teaching method .. 21
 - Evaluation .. 21
 - Mobility and/or Internationalisation outlook 21
 - Possible trainings at the end of the programme 21
 - Contacts .. 22
Introduction

In order to meet essential challenges such as energy management, communication and information, sustainable development and climate change, it is essential to foster scientific and technological creativity in the field of industrial materials and processes.

You
• have acquired solid knowledge of chemical or physical engineering and mathematics;
• are interested in research and development as well as production and management in cutting edge industries: chemistry, metals and materials, metallic products, plastics, electronics or the process industry;
• would like to take advantage of the most recent research advances in your area of specialisation.

Your Future Job

Jobs in chemical and materials engineering range from research and development to production and marketing.

You can become :
• A « systems » engineer :
Who designs new products or devices with specific properties or functions, e.g. a mitral valve, an electroluminescent polymer for a flexible display, a metallic alloy or a light composite for aerospace applications, a nanomaterial usable for memory storage.
• A « process » engineer :
Who develops new production processes or manages the operation of production units, e.g. a plastics extrusion line, a factory for the extraction of a pharmaceutical compounds from a given plant, a water or waste treatment plant, a production line for electronic components, a production unit for a high purity chemical compound, etc.
• A combination of both :
For instance, you develop a polymer material for the automotive industry and the synthesis/compounding process required for its industrial scale up.

Your Programme

The master offers:
• a specialised training in an international environment; from 2015-2016, all courses organized by the programme commission (i.e. courses with LMAPR2xxx designation) are taught in English ; assistance provided as needed to French-speaking students (“French-friendly” approach).
• an interdisciplinary approach to problem solving, rooted in physics and chemistry;
• research-based training : integration of students in experimental laboratories, research projects ;
• exposure to industry : factory visits, industry internships, graduation project in a company ;
• the possibility to obtain a dual degree if you are accepted in the Master’s degree programme “Functionalised Advanced Materials & Engineering" (FAME), part of the Erasmus Mundus programme. It is entirely in English and starts with a year of general training either at the National Polytechnic Institute of Grenoble (France) or at the University of Augsburg (Germany); in the second year, students specialise in a field of materials sciences at one of 7 partner universities. UCL offers a specialisation in materials and nano-structures engineering. Upon completing the programme, students are granted a dual Master’s degree. More information available on the web page https://www.uclouvain.be/master-fame.html
KIMA2M - Teaching profile

Learning outcomes

Building on fundamental scientific and technical knowledge (physics, chemistry, mechanics, mathematics) acquired during the Bachelor's program, the master's program in chemistry and materials science enables the student to develop polytechnic as well as specialized competences relating to materials, nanotechnology, as well as chemical and environmental engineering, which will allow him/her to fill leadership positions in the design and production of advanced materials and systems as well as the development and management of advanced technological processes.

The program takes up the broad challenges confronting today's engineers, thanks to a curriculum taught entirely in English (courses with MAPR2xxx designation) with assistance provided to French-speaking students.

The program combines coherence and flexibility thanks to a modular structure: a specialized focus and a common core taken by all students, complemented by major and elective courses, which provides students with a specific focus to their training. Depending on the majors chosen, the student may become:

- A systems engineer who designs new products or devices with targeted properties and functions;
- A process or chemical engineer who develops new production processes and optimizes or manages production facilities;
- A combination of both.

Through these activities, the chemical and materials engineer systematically takes into account constraints, values and rules (legal, ethical or economic).

He/she is autonomous, capable of managing industrial projects and comfortable working as part of a team. He/she is able to communicate in a foreign language, English in particular.

On successful completion of this programme, each student is able to:

1. demonstrate mastery of a solid body of knowledge and skills in engineering sciences allowing one to solve problems related to materials and procedures (axis 1).
 1.1 Identify and use concepts, laws and reasoning to solve a realistic problem.
 1.2 Identify, develop and use adequate modelling and calculation tools to solve realistic and complex problems.
 1.3 Verify the likelihood and confirm the validity of the results relating to a given problem.
2. organise and carry out an engineering procedure for the development of a specific material, a complex material system, a high purity product and/or complex compound or a process meeting a need or solving a particular problem (axis 2).
 2.1 Analyse a problem or functional requirement of realistic complexity and formulate a corresponding specifications note. An industrial specification for a material or a process contains many elements ranging from technical demands, to economic and logistic constraints as well as legal and safety aspects.
 2.2 Model a problem and design one or more original technical solutions corresponding to the specifications note.
 2.3 Evaluate and classify solutions with regard to all the criteria in the specifications note: efficiency, feasibility, quality, security and interaction/integration with other processes/components.
 2.4 Implement and test a solution in the form of a mock-up, a prototype, a lab or pilot module and/or a numerical model.
 2.5 Come up with recommendations to improve the operationalisation of a solution under study.
3. organise and carry out a research project to understand a physical or chemical phenomenon or a new problem in materials engineering and science or chemical engineering (axis 3).
 3.1 Document and summarize the existing body of knowledge in the area under consideration.
 3.2 Propose a model and/or an experimental device in order to simulate and test hypotheses relating to the phenomenon under study.
 3.3 Write a summary report that explains the potential of the theoretical or technical innovations resulting from the research project.
 3.4 Contribute as part of a team to the planning and completion of a project while taking into account its objectives, allocated resources, and constraints (axis 4).
 3.5 Frame and explain the project's objectives (in terms of performance indicators) while taking into account its issues and constraints (resources, budget, deadlines).
 3.6 Collaborate on a work schedule, deadlines and roles.
 3.7 Work in a multidisciplinary environment with peers holding different points of view; manage any resulting disagreement or conflicts.
 3.8 Make individual as well as team decisions when choices have to be made, whether they are about technical solutions or the division of labour to complete a project.
 3.9 Communicate effectively (orally or in writing) with the goal of carrying out assigned projects in the workplace. Ideally, the student should be able to communicate in one or more foreign languages in addition to his/her mother tongue (axis 5).
 3.10 Clearly identify the needs of the client or the user: question, listen and understand all aspects of their request and not just the technical aspects.
 3.11 Present arguments and adapt to the language of the interlocutors: technicians, colleagues, clients, superiors.
 3.12 Communicate through graphs and diagrams: interpret a diagram, present project results, structure information.
 3.13 Read and use different technical documents (rules, plans, specification notes).
5.5 Draft documents that take into account demands and conventions of the field.
5.6 Make a convincing oral presentation possibly using modern communication techniques.

6. demonstrate rigor, openness, critical thinking and a sense of ethics in your work. Using the technological and scientific innovations at your disposal, validate the socio-technical relevance of a hypothesis or a solution and act responsibly (axis 6).

6.1 Apply the standards of your discipline (terminology, measurement units, quality, security and environmental standards).
6.2 Find solutions that go beyond strictly technical issues by considering sustainable development and the ethical aspects of a project (for example, "life cycle analysis" among others).
6.3 Demonstrate critical awareness of a technical solution in order to verify its robustness and minimize the risks that may occur during implementation. (This skill is mainly developed during the graduation project which requires the critical analysis of implemented techniques as well as research for the Master’s thesis.)
6.4 Evaluate oneself and independently develop necessary skills for "lifelong learning" in the field (this skill is most notably developed through projects requiring bibliographic research).

Programme structure

The Master’s degree programme consists of:
- a core curriculum (35 credits) including the graduation project (28 credits), the course « molecules and materials analysis » LMAPR2011 (5 credits) and a religion course (2 credits);
- a professional focus (30 credits);
- one or more majors;
- elective courses to round out the programme.

The overwhelming majority of courses is given in English (all courses with LMAPR2xxx designation and a large proportion of the courses organized by EPL), with assistance provided to French-speaking students (« French-friendly » approach).

The student MUST choose at least one major among the six proposed in chemistry and materials.
He/she is further ALLOWED to choose a major among the two proposed in Business management and creation.

Normally, professional focus courses are taken during the first annual unit and the graduation project during the last one. However, students may (depending on their project) take these courses in the 1st or 2nd annual unit as long as they have completed the course prerequisites. This is particularly the case for students who complete part of their education abroad (ERASMUS or MERCATOR exchange, FAME dual degree).

If during the student’s previous studies, he or she has already taken a course that is part of the programme (either required or elective) or they have participated in an academic activity that is approved by the programme commission, the student will replace them with other elective courses or activities that are in keeping with programme regulations.

Regardless of the focus, major /or elective courses selected, the Master’s degree programme will consist of minimum of 120 credits divided over two annual units. The first annual unit has to consist of a minimum of 60 credits, the second the number of credits needed to complete the Master’s degree.

The student will verify that he/she has obtained the minimum number of credits required for the approval of the diploma as well as for the approval of the major, in order to include them in the diploma supplement.

Programmes that respect the above rules will be submitted for approval to the relevant Master’s degree programme commission.

For a programme-type, and regardless of the focus, options/or elective courses selected, this master will carry a minimum of 120 credits divided over two annual units, corresponding to 60 credits each.
Programme by subject

CORE COURSES [35.0]

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>LKIMA2990</td>
<td>Graduation project/End of studies project</td>
<td>Christian Bailly (coord.)</td>
<td>28</td>
<td>1, 2</td>
</tr>
<tr>
<td>LMAPR2011</td>
<td>Molecules and materials analysis</td>
<td>Arnaud Delcorte, Sophie Hermans</td>
<td>5</td>
<td>1q</td>
</tr>
<tr>
<td>LMAPR2013</td>
<td>Physical Chemistry for Metals and Ceramics</td>
<td>Pascal Jacques</td>
<td>5</td>
<td>1q</td>
</tr>
<tr>
<td>LMAPR2014</td>
<td>Physics of Functional Materials</td>
<td>Xavier Gonze, Luc Piraux, Gian-Marco Rignanese</td>
<td>5</td>
<td>1q</td>
</tr>
</tbody>
</table>

Periodic courses not taught during 2017-2018
- Physical Chemistry for Metals and Ceramics
- Physics of Functional Materials

Courses not taught during 2017-2018
- Molecules and materials analysis
- Graduation project/End of studies project

Activity with requisites

Students particularly interested in materials and molecules characterization can complete their training by taking additional major or elective courses. Specifically, these include: LMAPR2631 «surface analysis», LMAPR2642 «crystallographic and microstructural characterization of materials» and LBIRC2102A «organic analysis II, partim» (taught in French).

Religion courses for students in natural sciences (2 credits)

For students who did their bachelor at UCL

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTECO2100</td>
<td>Questions of religious sciences: Biblical readings</td>
<td>Hans Ausloos</td>
<td>2</td>
<td>1q</td>
</tr>
<tr>
<td>LTECO2200</td>
<td>Questions of religious sciences: reflections about Christian faith</td>
<td>Dominique Martens</td>
<td>2</td>
<td>2q</td>
</tr>
<tr>
<td>LTECO2300</td>
<td>Questions of religious sciences: questions about ethics</td>
<td>Marcella Lobo, Bustamante</td>
<td>2</td>
<td>1q</td>
</tr>
</tbody>
</table>

Transversal skills and professional contacts

If the student takes the internship LFSA2995 the maximum authorized credits are 26

De 3 à 21 credits parmi

PROFESSIONAL FOCUS [30.0]

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMAPR2013</td>
<td>Physical Chemistry for Metals and Ceramics</td>
<td>Pascal Jacques</td>
<td>5</td>
<td>1q</td>
</tr>
<tr>
<td>LMAPR2014</td>
<td>Physics of Functional Materials</td>
<td>Xavier Gonze, Luc Piraux, Gian-Marco Rignanese</td>
<td>5</td>
<td>1q</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Teachers</td>
<td>Credits</td>
<td>Semester</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>----------------------------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>LMAPR2019</td>
<td>Polymer Science and Engineering</td>
<td>Sophie Demoustier, Alain Jonas, Evelyne Van Ruymbeke</td>
<td>45h+15h</td>
<td>5</td>
</tr>
<tr>
<td>LMAPR2430</td>
<td>Industrial processes for the production of base chemicals</td>
<td>Juray De Wilde</td>
<td>30h+22.5h</td>
<td>5</td>
</tr>
<tr>
<td>LMAPR2481</td>
<td>Deformation and fracture of materials</td>
<td>Thomas Pardoen</td>
<td>30h+30h</td>
<td>5</td>
</tr>
<tr>
<td>LMAPR2647</td>
<td>Sustainable treatment of industrial and domestic waste: Fundamentals</td>
<td>Olivier Françoisse, Patricia Luis Alonero (coord.), Olivier Noiset, Benoît Stenuit</td>
<td>30h+15h</td>
<td>5</td>
</tr>
</tbody>
</table>
OPTIONS

Students must select at least one major among the following: Chemical and environmental engineering, Inorganic materials and processes, Biomaterials, Polymers and macro-molecules, Mechanics of materials, and Nano-technology.

Major in chemical and materials
> Major in chemical and environmental engineering
> Major in inorganic materials and processes
> Major in Polymers and macro-molecules
> Major in Mechanics of materials
> Major in Biomaterials
> Major in nanotechnology

Major in small and medium sized business creation
> Major in small and medium sized business creation
> Major in business risks and opportunities
> Elective courses
> Other elective courses available to students enrolled in the Master's degree in Chemical and Materials Engineering

MAJOR IN CHEMICAL AND MATERIALS

MAJOR IN CHEMICAL AND ENVIRONMENTAL ENGINEERING

The objective of this major is to enable the student to master the concepts and technologies used in chemical and environmental engineering with an emphasis on the dimensioning and optimisation of processes. Particular attention is given to energy control, safety and environmental aspects. The student progressively develops a global understanding of a chemical process and an in-depth knowledge of its parts and mutual interactions.

De 20 à 30 credits parmi

Required courses (15 credits)

- LMAPR2118 Fluid-fluid separations
 Patricia Luis Alconero
 Denis Mignon
 30h +22.5h
 5 Credits
 2q

- LMAPR2330 Reactor Design
 Juray De Wilde
 30h +30h
 5 Credits
 2q

- LMAPR2648 Sustainable treatment of industrial and domestic waste: Case studies
 Damien Debecker
 Olivier François
 Patricia Luis Alconero (coord.)
 Olivier Noislet
 30h +15h
 5 Credits
 2q

Recommended courses

Students have to take in priority LINMA1510 if they didn't follow it during Bachelor. If they have already taken it they can follow LINMA2300.

- LINMA1510 Linear Control
 Denis Dochain
 30h +30h
 5 Credits
 2q

- LINMA2300 Analysis and control of distributed parameter systems
 Denis Dochain
 30h +30h
 5 Credits
 1q
Course List

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Hours</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMAPR2320</td>
<td>Advanced Reactor and Separation Technologies for the Production of Base Chemicals and Polymers</td>
<td>Juray De Wilde, Patricia Luis Alconero, Denis Mignon</td>
<td>5</td>
<td>30+15h</td>
<td>1</td>
</tr>
<tr>
<td>LMAPR2380</td>
<td>Solid-fluid separation</td>
<td>Tom Leyssens, Patricia Luis Alconero</td>
<td>5</td>
<td>30+22.5h</td>
<td>1</td>
</tr>
<tr>
<td>LMAPR2691</td>
<td>Technology of chemical and environmental engineering</td>
<td>Pierre Descamps, Patricia Luis Alconero (coord.), Grégoire Winckelmans</td>
<td>5</td>
<td>30+15h</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Elective courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>max=10 credits parmi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LBIRC2102A</td>
<td>Organic Analysis II - partim A</td>
<td>Iwona Cybul ska, Raphaël Robiette (coord.)</td>
<td>5</td>
<td>30+30h</td>
<td>2</td>
</tr>
<tr>
<td>LENVI2007</td>
<td>Renewable energies</td>
<td>Xavier Draye, Patrick Gerin (coord.), Hervé Jeanmart, Geoffrey Van Moeseke</td>
<td>4</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>LENVI2101</td>
<td>Sociétés, populations, environnement, développement: problématiques et approches interdisciplinaires</td>
<td>Denis Dochain, Bernard Feltz, Jean-Pascal van Ypersele de Strihou (coord.)</td>
<td>6</td>
<td>45</td>
<td>1</td>
</tr>
<tr>
<td>LFSA2245</td>
<td>Environment and business</td>
<td>Thierry Bréchet, Jean-Pierre Tack</td>
<td>3</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>LINMA1702</td>
<td>Optimization models and methods I</td>
<td>François Glineur</td>
<td>5</td>
<td>30+22.5h</td>
<td>2</td>
</tr>
<tr>
<td>LMAPR2020</td>
<td>Materials Selection</td>
<td>Christian Bailly, Thomas Pardoen</td>
<td>5</td>
<td>30+22.5h</td>
<td>2</td>
</tr>
<tr>
<td>LMAPR2141</td>
<td>Metals Processing and Recycling</td>
<td>Philippe Henry, Joris Proost</td>
<td>5</td>
<td>30+30h</td>
<td>2</td>
</tr>
<tr>
<td>LMECA2645</td>
<td>Major technological hazards in industrial activity.</td>
<td>Denis Dochain, Alexis Dutrieux</td>
<td>3</td>
<td>30</td>
<td>2</td>
</tr>
</tbody>
</table>
MAJOR IN INORGANIC MATERIALS AND PROCESSES

This major enables the student to develop in-depth knowledge about the synthesis, processing and recycling of inorganic materials (metals, ceramics, sintered materials, inorganic glasses), their structural and functional properties, their microstructural details at different scales, and the relationship between their properties and their production methods.

- **Mandatory**
- **Optional**
- Courses not taught during 2017-2018
- Periodic courses taught during 2017-2018
- Activity with requisites

Click on the course title to see detailed informations (objectives, methods, evaluation...)

De 20 à 30 credits parmi

| Year | 1 | 2 |

Required courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMAPR2141</td>
<td>Metals Processing and Recycling</td>
<td>Philippe Henry, Joris Proost</td>
<td>5</td>
<td>2q</td>
</tr>
<tr>
<td>LMAPR2642</td>
<td>Crystallographic and microstructural characterisation of materials</td>
<td>Hosni Idrissi, Pascal Jacques</td>
<td>5</td>
<td>1q</td>
</tr>
</tbody>
</table>

Thermodynamics and processes of elaboration

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMAPR2672</td>
<td>Sintered materials and surface treatments</td>
<td>Jean-Pierre Erauw, Pascal Jacques (coord.), Joris Proost</td>
<td>5</td>
<td>3q</td>
</tr>
<tr>
<td>LKULH2013</td>
<td>Phase equilibria in inorganic materials and processes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Implementation and durability

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMAPR2420</td>
<td>High performance metallic materials</td>
<td>Pascal Jacques, Aude Simar</td>
<td>5</td>
<td>2q</td>
</tr>
<tr>
<td>LMAPR2482</td>
<td>Plasticity and metal forming</td>
<td>Laurent Delannay, Thomas Pardoen</td>
<td>5</td>
<td>2q</td>
</tr>
</tbody>
</table>

[Link to UCL website for more information](https://uclouvain.be/en-prog-2017-kima2m.html)
MAJOR IN POLYMERS AND MACRO-MOLECULES

The objective of this major is to help students master the relationships between the chemical structure of organic macro-molecules (polymers, bio-macromolecules, etc.), the microstructure of their derivative materials, the main synthesis methods and their implementation, and structural and functional properties occurring at a macroscopic and industrial level as well as at the level of nanotechnology and its applications.

Courses not taught during 2017-2018
- LMAPR2018: Rheometry and Polymer Processing
 - Christian Bailly
 - Evelyne Van Ruymbeke
 - 30h + 22.5h
 - 5 Credits
 - 2q

Courses taught during 2017-2018
- LMAPR2012: Macromolecular Nanotechnology
 - Sophie Demoustier
 - Karine Glinel (compensates Bernard Nysten)
 - Karine Glinel
 - Jean-François Gohy
 - Bernard Nysten (coord.)
 - 45h + 15h
 - 5 Credits
 - 2q

Activity with requisites
- Required courses
 - LMAPR2016: Project in Polymer Science
 - Charles-André Fustin
 - Alain Jonas
 - 0h + 45h
 - 5 Credits
 - 2q

- Polymer science complements
 - LCHM2261: Physical Chemistry and Chemistry of Polymers
 - Jean-François Gohy
 - Alain Jonas
 - 45h + 15h
 - 5 Credits
 - 1q

- Macromolecular bio and nanotechnology
 - LCHM2170: Introduction to protein biotechnology
 - Pierre Morsomme
 - Patrice Soumillon
 - 22.5h + 7.5h
 - 3 Credits
 - 1q

 - LMAPR2012: Macromolecular Nanotechnology
 - Sophie Demoustier
 - Karine Glinel (compensates Bernard Nysten)
 - Karine Glinel
 - Jean-François Gohy
 - Bernard Nysten (coord.)
 - 45h + 15h
 - 5 Credits
 - 2q

- Polymer materials engineering
MAJOR IN MECHANICS OF MATERIALS

The objective of this major is to introduce students to the principal mechanical characteristics of various categories of materials, to the consequences of these properties on their processing and use, to the methods used to simulate these properties, and to the criteria used to select materials for a given application.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMAPR2018</td>
<td>Rheometry and Polymer Processing</td>
<td>Christian Bailly, Evelyne Van Ruymbeke</td>
<td>30h +22.5h</td>
<td>2q x</td>
</tr>
<tr>
<td>LMAPR2020</td>
<td>Materials Selection</td>
<td>Christian Bailly, Thomas Pardoen</td>
<td>30h +22.5h</td>
<td>2q x</td>
</tr>
<tr>
<td>LMAPR2482</td>
<td>Plasticity and metal forming</td>
<td>Laurent Delannay, Thomas Pardoen</td>
<td>30h +22.5h</td>
<td>2q x</td>
</tr>
</tbody>
</table>

Composite materials

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMECA2141</td>
<td>Rheology</td>
<td>Vincent Legat, Evelyne Van Ruymbeke</td>
<td>30h+30h</td>
<td>1q x</td>
</tr>
<tr>
<td>LMECA2640</td>
<td>Mechanics of composite materials</td>
<td>Issam Doghri</td>
<td>30h+30h</td>
<td>2q x</td>
</tr>
</tbody>
</table>

Solid mechanics and numerical methods

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMECA1120</td>
<td>Introduction to finite element methods.</td>
<td>Vincent Legat</td>
<td>30h+30h</td>
<td>2q x</td>
</tr>
<tr>
<td>LGCIV1022</td>
<td>Mechanics of structures</td>
<td>Pierre Latteur</td>
<td>30h+30h</td>
<td>1 ou 2q x</td>
</tr>
<tr>
<td>LMECA2520</td>
<td>Calculation of planar structures</td>
<td>Issam Doghri</td>
<td>30h+30h</td>
<td>2q x</td>
</tr>
</tbody>
</table>

Mechanical metallurgy

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMAPR2420</td>
<td>High performance metallic materials</td>
<td>Pascal Jacques, Aude Simar</td>
<td>30h+30h</td>
<td>2q x</td>
</tr>
<tr>
<td>LMECA2860</td>
<td>Welding</td>
<td>Pascal Jacques, Aude Simar</td>
<td>30h+30h</td>
<td>1q x</td>
</tr>
</tbody>
</table>
MAJOR IN BIOMATERIALS

The objective of this major is to introduce students to the principal biochemical and biological concepts that are useful for developing applications in the field of biomaterials.

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>△ Courses not taught during 2017-2018</td>
<td>○ Periodic courses not taught during 2017-2018</td>
</tr>
<tr>
<td>☒ Periodic courses taught during 2017-2018</td>
<td>Activity with requisites</td>
</tr>
</tbody>
</table>

Click on the course title to see detailed informations (objectives, methods, evaluation...)

KIMA students are required to enrol in LGBIO2030 and LBIR1220A except if these 1st cycle course requirements were fulfilled previously. GBIO students are required to enrol in LMAPR2481 and LMAPR1805 except if these 1st cycle course requirements were fulfilled previously.

De 20 à 30 credits parmi

| Year | 1 | 2 |

Required courses (10 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Prerequisites</th>
<th>Credits</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGBIO2030</td>
<td>Biomaterials</td>
<td>Sophie Demoustier, Christine Dupont</td>
<td></td>
<td>5</td>
<td>1q x</td>
</tr>
</tbody>
</table>

Recommended courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Prerequisites</th>
<th>Credits</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBIR1321</td>
<td>Biochemistry II : metabolic pathways and their regulation</td>
<td>Michel Ghislain (coord.), Yvan Larondelle</td>
<td></td>
<td>3</td>
<td>1q x x</td>
</tr>
<tr>
<td>LBIO1335</td>
<td>Immunology</td>
<td>Jean-Paul Dehoux</td>
<td></td>
<td>3</td>
<td>1q x x</td>
</tr>
<tr>
<td>LELEC2560</td>
<td>Micro and Nanofabrication Techniques</td>
<td>Laurent Francis, Benoît Hackens, Jean-Pierre Raskin</td>
<td></td>
<td>5</td>
<td>2q x x</td>
</tr>
<tr>
<td>LMAPR2012</td>
<td>Macromolecular Nanotechnology</td>
<td>Sophie Demoustier, Karine Glinel (compensates Bernard Nysten), Karine Glinel, Jean-François Gohy, Bernard Nysten (coord.)</td>
<td></td>
<td>5</td>
<td>2q x x</td>
</tr>
</tbody>
</table>

Elective courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Prerequisites</th>
<th>Credits</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBIRC2101A</td>
<td>Analyse biochimique et notions de génie génétique: analyse biochimique</td>
<td>François Chaumont, Charles Hachez, Pierre Morsonne (coord.)</td>
<td></td>
<td>4</td>
<td>1q x x</td>
</tr>
<tr>
<td>LBIRC2108</td>
<td>Biochemical and Microbial Engineering</td>
<td>Iwona Cybulska</td>
<td></td>
<td>5</td>
<td>2q x x</td>
</tr>
<tr>
<td>LGBIO2020</td>
<td>Bioinstrumentation</td>
<td>André Moursaux, Michel Verleyens</td>
<td></td>
<td>5</td>
<td>1q x x</td>
</tr>
<tr>
<td>LGBIO1114</td>
<td>Artificial organs and rehabilitation</td>
<td>Luc-Marie Jacquet, Philippe Lefèvre, Renaud Ronis</td>
<td></td>
<td>5</td>
<td>2q x x</td>
</tr>
<tr>
<td>LMAPR2010</td>
<td>Polymer Materials</td>
<td>Christian Bailly, Bernard Nysten, Evelyne Van Ruymbeke (compensates Bernard Nysten)</td>
<td></td>
<td>5</td>
<td>1q x x</td>
</tr>
<tr>
<td>LMAPR2018</td>
<td>Rheometry and Polymer Processing</td>
<td>Christian Bailly, Evelyne Van Ruymbeke</td>
<td></td>
<td>5</td>
<td>2q x x</td>
</tr>
<tr>
<td>LMAPR2631</td>
<td>Surface Analysis</td>
<td>Arnaud Delcourt, Bernard Nysten</td>
<td></td>
<td>5</td>
<td>2q x x</td>
</tr>
</tbody>
</table>
MAJOR IN NANOTECHNOLOGY

As with the Master’s degree programmes in electrical, electromechanic, physical, chemical, and materials science engineering, the objective of this major is to introduce students to the physics and simulation of materials and devices used in the field of micro- and nanotechnologies, to the properties and methods used to manufacture and characterise micro and nanostructures, to the ways in which nano-devices function as well as to the development and integration of (bio) organic elements in nano-systems.

The student choosing this major selects
De 20 à 30 credits parmi

<table>
<thead>
<tr>
<th>Year</th>
<th>Course</th>
<th>Description</th>
<th>Credits</th>
<th>Periodic</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LMAPR2015</td>
<td>Physics of Nanostructures</td>
<td>Jean-Christophe Charlier, Xavier Gonze, Aurélien Lherbier (compensates Xavier Gonze and Aurélien Lherbier), Luc Piraux</td>
<td>37.5h + 22.5h</td>
<td>5 Credits</td>
</tr>
<tr>
<td>2</td>
<td>LMAPR2451</td>
<td>Atomistic and nanoscopic simulations</td>
<td>Jean-Christophe Charlier, Xavier Gonze, Aurélien Lherbier (compensates Jean-Christophe Charlier), Gian-Marc Rignanese</td>
<td>30h+30h</td>
<td>5 Credits</td>
</tr>
<tr>
<td>2</td>
<td>LMAPR2471</td>
<td>Transport phenomena in solids and nanostructures</td>
<td>Jean-Christophe Charlier, Aurélien Lherbier (compensates Jean-Christophe Charlier), Luc Piraux</td>
<td>30h+30h</td>
<td>5 Credits</td>
</tr>
<tr>
<td></td>
<td>LPHY2273</td>
<td>Cryophysique et questions spéciales de supraconductivité</td>
<td>Vincent Bayot, Luc Piraux</td>
<td>45h+15h</td>
<td>5 Credits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Course</th>
<th>Description</th>
<th>Credits</th>
<th>Periodic</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>LELEC2541</td>
<td>Advanced Transistors</td>
<td>Vincent Bayot (coord.), Denis Flandre, Jean-Pierre Raskin</td>
<td>30h+30h</td>
<td>5 Credits</td>
</tr>
<tr>
<td>2</td>
<td>LELEC2550</td>
<td>Special electronic devices</td>
<td>Vincent Bayot (coord.), Denis Flandre, Laurent Francis, Jean-Pierre Raskin</td>
<td>30h+30h</td>
<td>5 Credits</td>
</tr>
<tr>
<td>2</td>
<td>LELEC2710</td>
<td>Nanoelectronics</td>
<td>Vincent Bayot (coord.), Denis Flandre, Laurent Francis, Jean-Pierre Raskin</td>
<td>30h+30h</td>
<td>5 Credits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Course</th>
<th>Description</th>
<th>Credits</th>
<th>Periodic</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>LELEC2560</td>
<td>Micro and Nanofabrication Techniques</td>
<td>Laurent Francis, Benoît Hackens, Jean-Pierre Raskin</td>
<td>30h+30h</td>
<td>5 Credits</td>
</tr>
<tr>
<td>2</td>
<td>LELEC2895</td>
<td>Design of micro and nanosystems</td>
<td>Denis Flandre, Laurent Francis (coord.), Thomas Pardoen, Jean-Pierre Raskin</td>
<td>30h+30h</td>
<td>5 Credits</td>
</tr>
<tr>
<td>Code</td>
<td>Course</td>
<td>Instructor(s)</td>
<td>Credits</td>
<td>Offered</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------------</td>
<td>--------------------------------------</td>
<td>---------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>LMAPR2012</td>
<td>Macromolecular Nanotechnology</td>
<td>Sophie Demoustier, Karine Glinel, Jean-François Gohy, Bernard Nysten (coord.)</td>
<td>5</td>
<td>2q, x, x</td>
<td></td>
</tr>
<tr>
<td>LMAPR2631</td>
<td>Surface Analysis</td>
<td>Arnaud Delcorte, Bernard Nysten</td>
<td>5</td>
<td>2q, x, x</td>
<td></td>
</tr>
</tbody>
</table>
MAJOR IN SMALL AND MEDIUM Sized BUSINESS CREATION

The goal of this major is to familiarise engineering students with the specifics of small and medium sized businesses, entrepreneurship, and business creation so they may develop the necessary skills, knowledge and tools to create a business. This major is reserved for a small number of students and selection is based on a written application and individual interview.

The written application must be submitted before the start of the academic year for Master’s 1.

Applications may be sent to:
Secrétariat CPME-Place des Doyens, 1
1348 Louvain-la-Neuve (tel. 010/47 84 59)

Selected students will replace their Master’s thesis in the common core curriculum with a thesis related to business creation (the number of credits remaining the same).

Further information about this major may be found at http://www.uclouvain.be/cpme. This major may not be taken at the same time as a major in management. Students in this major may choose 20-25 credits from the following courses:

De 20 à 25 credits parmi

Required courses for the major in small and medium sized businesses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teacher(s)</th>
<th>Credits</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCPME2001</td>
<td>Entrepreneurship Theory (in French)</td>
<td>Frank Janssen</td>
<td>5</td>
<td>1q</td>
</tr>
<tr>
<td>LCPME2002</td>
<td>Managerial, legal and economic aspects of the creation of a company (in French)</td>
<td>Yves De Cordt, Marine Falize</td>
<td>5</td>
<td>1q</td>
</tr>
<tr>
<td>LCPME2003</td>
<td>Business plan of the creation of a company (in French)</td>
<td>Frank Janssen</td>
<td>5</td>
<td>2q</td>
</tr>
<tr>
<td>LCPME2004</td>
<td>Advanced seminar on Entrepreneurship (in French)</td>
<td>Roxane De Hoe (compensates Frank Janssen) Frank Janssen</td>
<td>5</td>
<td>2q</td>
</tr>
</tbody>
</table>

Prerequisite CPME courses

Student who have not taken management courses during their previous studies must enroll in LCPME2000.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teacher(s)</th>
<th>Credits</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCPME2000</td>
<td>Venture creation financement and management I</td>
<td>Yves De Rongé, Olivier Giacomin</td>
<td>5</td>
<td>1q</td>
</tr>
</tbody>
</table>
MAJOR IN BUSINESS RISKS AND OPPORTUNITIES

As with most of the Master’s degree programmes in civil engineering, the objective of this major is to introduce students to the basic principles of business management.

This major may not be taken at the same time as the major in small and medium sized business creation. The class FSA2240 is not included in this major for GCE students. Students selecting this major may take 16-20 credits among the following courses:

De 16 à 20 credits parmi

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lecturer(s)</th>
<th>ECTS</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFSA1290</td>
<td>Introduction to financial and accounting management</td>
<td>André Nsabimana (compensates Gerrit Sarens) Gerrit Sarens</td>
<td>30h+15h</td>
<td>4 Credits</td>
</tr>
<tr>
<td>LFSA2140</td>
<td>Elements of law for industry and research</td>
<td>Werner Derijcke Bénédicte Inghels Christophe Lazaro</td>
<td>30h</td>
<td>3 Credits</td>
</tr>
<tr>
<td>LFSA2210</td>
<td>Organisation and human resources</td>
<td>John Cultiaux</td>
<td>30h</td>
<td>3 Credits</td>
</tr>
<tr>
<td>LFSA2230</td>
<td>Introduction to management and to business economics</td>
<td>Benoît Gailly</td>
<td>30h+15h</td>
<td>4 Credits</td>
</tr>
<tr>
<td>LFSA2245</td>
<td>Environment and business</td>
<td>Thierry Bréchet Jean-Pierre Tack</td>
<td>30h</td>
<td>3 Credits</td>
</tr>
</tbody>
</table>

One course between

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lecturer(s)</th>
<th>ECTS</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFSA2202</td>
<td>Ethics and ICT</td>
<td>Axel Gosseries Olivier Pereira</td>
<td>30h</td>
<td>3 Credits</td>
</tr>
<tr>
<td>LLSMS2280</td>
<td>Business Ethics and Compliance Management</td>
<td>Carlos Desmet</td>
<td>30h</td>
<td>5 Credits</td>
</tr>
</tbody>
</table>

Alternative to the major in business risks and opportunities for computer science students

Computer science students who have already taken courses in this field while pursuing their Bachelor’s degree may choose between 16-20 credits from the courses offered in the management minor for computer sciences.
ELECTIVE COURSES

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Courses not taught during 2017-2018</th>
<th>Exceptional courses not taught during 2017-2018</th>
<th>Activity with requisites</th>
</tr>
</thead>
</table>

Click on the course title to see detailed informations (objectives, methods, evaluation...)

De 3 à 21 credits parmi

- **Compétences transversales et contact avec l'entreprise**

 L'étudiant choisit minimum 3 crédits parmi un stage, un ou plusieurs cours de l'option "Enjeux de l'entreprise", l'option "CPME", une UE d'activité professionnelle liée à la discipline min=3 credits parmi

- **Internship**

 - LFSA2995: Company Internship (Jean-Pierre Raskin) 30h 10 Credits 1+2q x
 - LFSA2996: Company Internship 5 Credits 1+2q x

- **Professional integration activity specific to the program**

 - LMECA2711: Quality management and control. (Nicolas Bronchart) 30h+30h 5 Credits 2q x

- **Communication**

 L'étudiant choisit maximum 8 crédits visant le développement de ses compétences de communication max=8 credits parmi

- **Languages**

 Students may select from any language course offered at the ILV. Special attention is placed on the following seminars in professional development:

 - LALLE2500: Professional development seminar German (Caroline Klein Ann Rinder (coord.)) 30h 3 Credits 1+2q x
 - LALLE2501: Professional development seminar-German (Caroline Klein Ann Rinder (coord.)) 30h 5 Credits 1+2q x
 - LESPA2600: Vocational Induction Seminar - Spanish (B2.2/C1) (Paula Lorente Fernandez (coord.)) 30h 3 Credits 1q x
 - LESPA2601: Vocational Induction Seminar - Spanish (B2.2/C1) (Paula Lorente Fernandez (coord.)) 30h 5 Credits 1q x
 - LNEER2500: Seminar of Entry to professional life in Dutch - Intermediate level (Isabelle Demeulenaere (coord.) Mariken Smit) 30h 3 Credits 1 ou 2q x
 - LNEER2600: Seminar of entry to professional life in Dutch - Upper-Intermediate level (Isabelle Demeulenaere (coord.)) 30h 3 Credits 1 ou 2q x

- **Group dynamics**

 - LFSA2351A: Group dynamics (Piotr Sobieski (coord.) Vincent Wertz (coord.)) 15h+30h 3 Credits 1q x
 - LFSA2351B: Group dynamics (Piotr Sobieski (coord.) Vincent Wertz (coord.)) 15h+30h 3 Credits 2q x

- **Autre UE non disciplinaires**

 L'étudiant peut proposer maximum 8 crédits d'ouverture vers d'autres disciplines (maximum un cours BEST ou des UE hors EPL). max=8 credits parmi
OTHER ELECTIVE COURSES AVAILABLE TO STUDENTS ENROLLED IN THE MASTER'S DEGREE IN CHEMICAL AND MATERIALS ENGINEERING

Students can also include in their curriculum any course included in other EPL masters, subject to the approval of the jury.

Course prerequisites

A document entitled en-prerequis-2017-kima2m.pdf specifies the activities (course units - CU) with one or more pre-requisite(s) within the study programme, that is the CU whose learning outcomes must have been certified and for which the credits must have been granted by the jury before the student is authorised to sign up for that activity.

These activities are identified in the study programme: their title is followed by a yellow square.

As the prerequisites are a requirement of enrolment, there are none within a year of a course.

The prerequisites are defined for the CUs for different years and therefore influence the order in which the student can enrol in the programme's CUs.

In addition, when the panel validates a student's individual programme at the beginning of the year, it ensures the consistency of the individual programme:

• It can change a prerequisite into a corequisite within a single year (to allow studies to be continued with an adequate annual load);
• It can require the student to combine enrolment in two separate CUs it considers necessary for educational purposes.

For more information, please consult regulation of studies and exams.

The programme's courses and learning outcomes

For each UCL training programme, a reference framework of learning outcomes specifies the competences expected of every graduate on completion of the programme. You can see the contribution of each teaching unit to the programme's reference framework of learning outcomes in the document "In which teaching units are the competences and learning outcomes in the programme's reference framework developed and mastered by the student?"

For each UCL training programme, a reference framework of learning outcomes specifies the competences expected of every graduate on completion of the programme. You can see the contribution of each teaching unit to the programme's reference framework of learning outcomes in the document "In which teaching units are the competences and learning outcomes in the programme's reference framework developed and mastered by the student?"

The document is available by clicking this link after being authenticated with UCL account.
KIMA2M - Information

Admission

COMMON_ALERT_MSG

SUMMARY

- Specific Admission Requirements
- University Bachelors
- Non university Bachelors
- Holders of a 2nd cycle University degree
- Holders of a non-University 2nd cycle degree
- Adults taking up their university training
- Access on the file
- Admission and Enrolment Procedures for general registration

Specific Admission Requirements

This programme is taught in English with no prerequisite in French. The student is supposed to have at least a B2 level in the European Framework of Reference. A certificate is required for the holders of a non-belgian degree, see selection criteria of the personalized access.

University Bachelors

<table>
<thead>
<tr>
<th>Diploma</th>
<th>Special Requirements</th>
<th>Access</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCL Bachelors</td>
<td></td>
<td>Direct Access</td>
<td></td>
</tr>
<tr>
<td>Others Bachelors of the French speaking Community of Belgium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachelor in engineering</td>
<td>Access with additional training</td>
<td>Students who have no specialisation in the field of their civil engineering master degree may have an adapted master programme with up to 60 additional credits.</td>
<td></td>
</tr>
<tr>
<td>Bachelors of the Dutch speaking Community of Belgium</td>
<td></td>
<td>Access with additional training</td>
<td></td>
</tr>
<tr>
<td>Bachelor in engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foreign Bachelors</td>
<td></td>
<td>Direct Access</td>
<td></td>
</tr>
<tr>
<td>Bachelor in engineering</td>
<td>Bachelors degree of Cluster Institution</td>
<td></td>
<td>Students with a Bachelor's degree in engineering sciences who have not taken the equivalent of a minor in the field of their civil engineering master degree may have an adapted master programme.</td>
</tr>
<tr>
<td>Bachelor in Engineering</td>
<td>For others institutions</td>
<td>Based on application: accepted, conditional on further training, or refusal</td>
<td>See personalized access</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Direct Access</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Based on application: accepted, conditional on further training, or refusal</td>
<td></td>
</tr>
</tbody>
</table>

Non university Bachelors

COMMON_NON_UNIV_BACHELORS

 Holders of a 2nd cycle University degree
Diploma	Special Requirements	Access	Remarks
"Licenciés" | | | |

Masters

| Master in Engineering | Direct Access |
| | |

Holders of a non-University 2nd cycle degree

Adults taking up their university training

COMMON_ADULTES_REPRISE_ETUDE

Access on the file

COMMON_PERSONALIZED_ACCESS

The first step of the admission procedure requires to submit an application online: https://uclouvain.be/en/study/inscriptions/futurs-etudiants.html

Selection criteria are summarized here.

Admission and Enrolment Procedures for general registration

COMMON_ADMISSION_ENROLLMENT_PROC
Teaching method

A variety of teaching methods

The teaching methods used in the Master’s degree programme in chemical and materials engineering are in keeping with those used in the Bachelor’s degree programme in engineering sciences: active learning, an equal mix of group work and individual work, and emphasis on the development of non-technical skills. An important characteristic of the programme is the immersion of students in the research laboratories of the professors who teach in the programme (lab work, case studies, projects and theses), which allows students to learn cutting edge methods used in their field and to learn from the questioning process inherent in research. In addition, there is an optional 10 credit internship carried out over at least 9 months in a research centre or company that allows motivated students to get experience in the professional world.

Diverse learning situations

Students are exposed to a variety of pedagogies: lectures, projects, exercise and problem-solving sessions, case studies, experimental laboratories, computer simulations, educational software, internships in industry or research, factory visits, graduation trips, individual or group work, seminars given by visiting scientists. This variety of pedagogies helps students to build their knowledge in an iterative and progressive manner all the while developing their independence, organisational and time management skills as well as their ability to communicate.

Interdisciplinary Methods

The Master’s degree in chemical and materials engineering is by its very nature interdisciplinary because it serves as an interface between chemistry and physics. It has an interdisciplinary foundation, which provides students with an introduction the large array of applications used in applied physics and chemistry and training through practical work and cutting edge research as well as major courses in chemistry and material technologies: polymers and macromolecules, inorganic materials and processes, materials mechanics, chemical engineering, nanotechnologies and environmentalism and sustainable development. The programme is open to biotechnology with majors in biomaterials and bioprocesses as well as to business management with majors in management and small and medium sized business creation. The programme is open and interdisciplinary. Finally, the programme allows students to select up to 40 credits of elective courses from the medical and science programmes and up to 6 credits of classes in the humanities and social sciences, which allow students to create a personalised programme of study.

Evaluation

Student work is evaluated according to University rules (see the rules for evaluating coursework and exams) namely written and oral exams, laboratory exams, individual or group work, public presentations of projects and theses defences. Details about evaluation methods for each teaching unit are explained by the professors at the beginning of the semester.

For more information on evaluation methods, students may consult the relevant evaluation descriptions.

Mobility and/or Internationalisation outlook

Since its creation, the Louvain School of Engineering (EPL) has participated in diverse exchange programs that were put into place at the European level and beyond.

Possible trainings at the end of the programme

Accessible specialised Master’s degrees

The Master’s degree in nanotechnology and the Master’s degree in nuclear engineering are natural extensions of the programme.

Accessible doctoral degrees

The Master’s degree programme in chemistry and materials engineering also prepares students for doctoral programmes. Programme professors are members of doctoral programmes such as CHIM (molecular, supramolecular and functional chemistry), MAIN (materials, interfaces and nanotechnologies) and GEPROC (process engineering). These programmes are suitable for students who would like to continue their studies at the doctoral level.

UCL Master’s degrees (about 60) are accessible to UCL Master’s degree holders

For example:

- The Master’s degree (120) in sciences and environmental management and the Master’s degree (60) in sciences and environmental management (automatic admission with possible complementary coursework)

- Different Master’s degree programmes in management (automatic admission based on written application): see this list

- The Master’s degree (60) in information and communication at Louvain-la-Neuve or the Master’s degree (60) in information and communication at Mons
Contacts

Curriculum Management

Entity
Structure entity
Denomination
Faculty
Sector
Acronym
Postal address

SST/EPL/FYKI
(FYKI)
Louvain School of Engineering (EPL)
Sciences and Technology (SST)
FYKI
Place Sainte Barbe 2 - bte L5.02.02
1348 Louvain-la-Neuve
Tel: +32 (0)10 472 487 - Fax: +32 (0)10 474 028

Academic supervisor: Christian Bailly

Jury
• Président du Jury: Jean-Didier Legat
• Secrétaire du Jury: Luc Piraux

Usefull Contact(s)
• Mme: Vinciane Gandibleux (Tel: 010 47 96 23)