Master [120] in Electro-mechanical Engineering

At Louvain-la-Neuve - 120 credits - 2 years - Day schedule - In english
Dissertation/Graduation Project: YES - Internship: optional
Activities in other languages: YES
Activities on other sites: optional
Main study domain: Sciences de l'ingénieur et technologie
Organized by: Ecole Polytechnique de Louvain (EPL)
Programme acronym: elme2m - Francophone Certification Framework: 7

Table of contents

Introduction .. 2
Teaching profile ... 3
- Learning outcomes .. 3
- Programme structure ... 4
- Detailed programme ... 5
 - Programme by subject ... 5
 - Course prerequisites ... 21
- The programme's courses and learning outcomes .. 21
Information ... 22
 - Admission .. 22
 - Teaching method ... 24
 - Evaluation ... 24
 - Mobility and/or Internationalisation outlook ... 24
 - Possible trainings at the end of the programme ... 25
 - Contacts ... 25
ELME2M - Introduction

Introduction

The Master's degree programme in electro-mechanical engineering draws equally from two fields (mechanics and electricity) and prioritises basic knowledge with the goal of deepening or reorienting students’ knowledge mid-career. By the end of the programme, students will be able to keep up with technical developments and adapt themselves to the needs of the job market.

Your Profile

You

• Have solid knowledge of electricity and mechanics;

• Want to improve your understanding of current technological and scientific issues;

• Want to design, model, realise and validate experimental devices and systems;

• Want to specialise in mechatronics or in energy and foresee a career in robotics and "flexible production", energy transformation and management, vehicles and transportation systems and/or aeronautics.

Your Programme

This Master's degree offers:

• General knowledge of electro-mechanics based on research;

• The mastery of mathematical and physical methods used in electricity and mechanics;

• An interdisciplinary approach to problem solving with particular emphasis placed on interface problems;

• Pedagogy centred on project-based learning;

• The possibility of testing your knowledge in the job market thanks to internships in the industrial sector

Majors: Mechatronics; Energy
Learning outcomes

Integrating the fields of mechanics and electricity is one of the major challenges of the civil engineering student in electro-mechanics. The Master’s degree in Electro-mechanical engineering from UCL favours multidisciplinary training and the ability to solve interface problems raised by the integration of several fields. It integrates the fields of electricity and mechanics into a coherent whole and prioritises basic knowledge with the aim of deepening or reorienting students’ knowledge mid-career.

Students will acquire the knowledge and skills necessary to become:

• Specialists in mechatronics (electronics, mechanical production, automation and robotics) or specialists in energy (smart grids/energy networks, thermodynamics and energy).

• Individuals with field experience capable of putting into practice their knowledge of research and technology.

• Managers who can manage team projects.

The Master’s degree programme in electro-mechanical engineering prepares its students to be aware of technical progress and adapt to the needs of the job market and changes in business.

Polytechnic and multidisciplinary, the training provided by the Louvain School of Engineering privileges the acquisition of knowledge that combines theory and practice and that is open to analysis, design, manufacturing, production, research and development and innovation all the while paying attention to ethics and sustainable development.

On successful completion of this programme, each student is able to:

1. Demonstrate mastery of a solid body of knowledge in basic science and engineering science allowing the student to learn and solve problems pertaining to electro-mechanics. (Axis 1)

 1. Identify and use concepts, laws and appropriate reasoning from a variety of fields in mechanics and electricity to solve a given problem:

 • Electricity (in the broad sense)
 • Electrical energy (transport, quality, management)
 • Electro-technics (conversion, controls, activation)
 • Electronics (digital electronics, instrumentation, sensors)
 • Automation
 • Computer sciences (real time)
 • Mechanics (modeling, design)
 • Thermodynamics and thermics
 • Fluid dynamics and transfers
 • Robotics and automation.
 • Energetic systems (production, distribution, heat and energetic efficiency)

2. Identify and use modelling and calculation tools to solve problems associated with the aforementioned fields.

3. Verify problem solving results especially with regard to orders of magnitude and/or units (in which the results are expressed).

2. Organize and carry out an applied engineering process to develop a product and/or service responding to a particular need or problem in the field of electro-mechanics. (Axis 2)

 1. Analyse a problem, take stock of features and constraints, and formulate specifications in a field where the technical and economic limits are taken into account.
 2. Model a problem and design one or more technical solutions (drawing on the fields of mechanics, electrics, electronics, electro-technics or information technology) and respond to problem specifications.
 3. Evaluate and classify solutions with regards to all the specification criteria: efficiency, feasibility, ergonomic quality and environmental security (for example: too expensive, too complex, too dangerous, too difficult to manipulate).
 4. Test a solution using a mock up, a prototype or a numerical model.
 5. Formulate recommendations to improve a technical solution.

3. Organise and carryout a research project to learn about a physical phenomenon or a new problem relating to the field of electro-mechanics. (Axis 3)

 1. Document and summarise the existing body of knowledge in the field of mechanics and electricity.
 2. Suggest an experimental model or device (for example in the area of thermal regulation) by first constructing a mathematical model, then by using laboratories to create a device simulates system behaviour and tests relevant hypotheses.
3. Synthesize conclusions in a report that shows the key parameters and their influence on the behaviour of the phenomenon under study (choice of forms and materials, physio-chemical environment, conditions for use).

4. Contribute, through teamwork, to a multidisciplinary project and carry out the project while taking into account its objectives, resources, and constraints. (Axis 4)
 1. Frame and explain the project’s objectives taking into account the issues, constraints and domain interfaces that characterise the project’s environment.
 2. Collaborate with peers on a multidisciplinary topic (mechanics and electricity) to create a work schedule (and resolve any resulting conflicts).
 3. Make team decisions to successfully complete the project whether they be about technical solutions of the division of labour.

5. Communicate effectively (speaking or writing in French or a foreign language) with the goal of carrying out assigned projects. (Axis 5)
 1. Identify the clients’ needs: question, listen and ensure the understanding of all the dimensions of the request and not just the technical aspects.
 2. Present your arguments and convince your interlocutors (technicians, colleagues, clients, superiors) by adopting their language.
 3. Communicate through graphics and diagrams: interpret a diagram, present work results, structure information.
 4. Read and analyse different technical documents related to the profession (standards, drawings, specifications).
 5. Draft written documents that take into account contextual requirements and social conventions.
 6. Use modern communication techniques to give convincing oral presentations.

6. Display rigour, openness, and critical thinking; validate the socio-technical relevance of a hypothesis or a solution, all the while drawing upon available technological and scientific innovations. (Axis 6)
 1. Apply standards and assure the robustness of a solution in the fields of mechanics and electricity.
 2. Put solutions into perspective by including non-technical concerns (for example, in the area of energy and climate, take environmental and social factors into consideration).
 3. Demonstrate critical thinking vis-à-vis technical solutions or methodological approach regarding the involved actors.
 4. Evaluate one’s own work.

Programme structure

The student’s programme includes:

- A common core curriculum (54 credits)
- A final specialisation (30 credits)
- One of more of the major courses or elective courses listed below.

The graduation project is normally completed in the second year. However, students may, depending on the nature of their project, choose to take their classes in the first or second year so long as their course prerequisites allow it. This is particularly the case for students completing part of their program abroad.

If during the student’s previous studies, he or she has already taken a course that is part of the programme (either required or elective) or they have participated in an academic activity that is approved by the programme commission, the student may count this activity toward their graduation requirements (but only if they respect programme rules). The student will also verify that he/she has obtained the minimum number of credits requested for the approval of their diploma as well as for the approval of their major (in order to include their academic distinctions in the diploma supplement).

These types of programmes will be submitted for approval by the relevant Master’s degree programme commission.

For a programme-type, and regardless of the focus, options/or elective courses selected, this master will carry a minimum of 120 credits divided over two annual units, corresponding to 60 credits each.
ELME2M Detailed programme

Programme by subject

CORE COURSES [54.0]

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>LELME2990</td>
<td>Graduation project/End of studies project</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>LLELEC2311</td>
<td>Physics of Electromechanical Converters</td>
<td>4</td>
<td>2q</td>
</tr>
<tr>
<td>LLELEC2660</td>
<td>Power electronics</td>
<td>4</td>
<td>1q</td>
</tr>
<tr>
<td>LLELEC2811</td>
<td>Instrumentation and sensors</td>
<td>5</td>
<td>1q</td>
</tr>
<tr>
<td>LMECA2755</td>
<td>Industrial automation</td>
<td>5</td>
<td>1q</td>
</tr>
</tbody>
</table>

Electrical and electronics courses

- **Mandatory**
 - Physics of Electromechanical Converters
 - Power electronics
 - Instrumentation and sensors

- **Optional**
 - Industrial automation

Mechanical courses

- **Mandatory**
 - Industrial automation

Religion courses for students in exact sciences (2 credits)

- **Mandatory**
 - Questions of religious sciences: Biblical readings
 - Questions of religious sciences: reflections about Christian faith
 - Questions of religious sciences: questions about ethics

Project (6 credits)

- **Mandatory**
 - Project in mechatronics
 - Project in energy

Click on the course title to see detailed informations (objectives, methods, evaluation...)

The students choose one course between:

The student shall select
Transversal skills and professional contacts

If the student takes the internship LFSA2995 the maximum authorized credits are 26
De 3 à 21 credits parmi
LIST OF FOCUSES

> Professional focus : Mecatronics
> Professional focus : Energy

PROFESSIONAL FOCUS : MECATRONICS [30.0]

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courses not taught during 2018-2019</td>
<td>Periodic courses not taught during 2018-2019</td>
</tr>
<tr>
<td>Periodic courses taught during 2018-2019</td>
<td>Activity with requisites</td>
</tr>
</tbody>
</table>

Click on the course title to see detailed informations (objectives, methods, evaluation...)

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
</table>

- **LELEC2103**
 Project in Electricity 3 : Electronic systems
 Jean-Didier Legat
 Léon Vandendorpe
 75h
 5 Credits
 Prerequisite:

- **LELEC2313**
 Dynamic modelling and control of electromechanical converters
 Emmanuel De Jaeger
 Bruno Dehez
 30h+30h
 5 Credits
 Prerequisite:

- **LELEC2531**
 Design and Architecture of digital electronic systems
 Jean-Didier Legat
 30h+30h
 5 Credits
 Prerequisite:

- **LMECA2732**
 Introduction to robotics
 Renaud Ronsse
 30h+30h
 5 Credits
 Prerequisite:

- **LMECA2801**
 Machine design
 Benoît Raouent
 Benoît Raouent (compensates Aude Simar)
 Thomas Servais (compensates Benoît Raouent)
 Aude Simar
 30h+30h
 5 Credits
 Prerequisite:

- **LINGI2315**
 Design of Embedded and real-time systems
 Jean-Didier Legat
 30h+30h
 5 Credits
 Prerequisite:

PROFESSIONAL FOCUS : ENERGY [30.0]

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courses not taught during 2018-2019</td>
<td>Periodic courses not taught during 2018-2019</td>
</tr>
<tr>
<td>Periodic courses taught during 2018-2019</td>
<td>Activity with requisites</td>
</tr>
</tbody>
</table>

Click on the course title to see detailed informations (objectives, methods, evaluation...)

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
</table>

- **LMECA2150**
 Thermal cycles
 Yann Bartosiewicz
 30h+30h
 5 Credits
 Prerequisite:

- **LMECA2160**
 Combustion and fuels
 Miltiadis Papalexandris
 30h+30h
 5 Credits
 Prerequisite:

- **LMECA2220**
 Internal combustion engines
 Hervé Jeanmart
 30h+30h
 5 Credits
 Prerequisite:

- **LMECA2322**
 Fluid mechanics and transfer II
 Matthieu Duponcheel
 Grégoire Winckelmans
 30h+30h
 5 Credits
 Prerequisite:

- **LELEC2520**
 Electric Power Systems
 Emmanuel De Jaeger
 30h+30h
 5 Credits
 Prerequisite:

- **LELEC2595**
 Electric Power Systems Quality
 Emmanuel De Jaeger
 30h+30h
 5 Credits
 Prerequisite:

OPTIONS
Students complete their programme through a combination of major course work and elective classes for a minimum total of 120 credits.

Options

- **Major in circuits and electronic systems**
 - [en-prog-2018-elme2m-lelme227o](#)
- **Major in Systems and control engineering**
 - [en-prog-2018-elme2m-lelme230o](#)
- **Major in dynamics, robotics and biomechanics**
 - [en-prog-2018-elme2m-lelme223o](#)
- **Major in nuclear engineering**
 - [en-prog-2018-elme2m-lelme237o](#)
- **Major in aeronautics**
 - [en-prog-2018-elme2m-lelme240o](#)
- **Major in design, manufacturing and mechanics of materials**
 - [en-prog-2018-elme2m-lelme241o](#)
- **Major in systems creation and management**
 - [en-prog-2018-elme2m-lelme235o](#)
 - [en-prog-2018-elme2m-lelme236o](#)
- **Elective courses**
 - [en-prog-2018-elme2m-lelme231o](#)
 - [en-prog-2018-elme2m-lelme953o](#)

OPTIONS

Students may select one of the majors suggested by the Master’s degree programme in electrical or mechanical engineering provided that the courses in question are not already part of their course schedule. The following majors are highly recommended.

MAJOR IN CIRCUITS AND ELECTRONIC SYSTEMS

The goal of this major (which it shares with Master’s degree programs in electricity and electro-mechanics) is to introduce students to system design techniques, computer aided simulation, manufacturing and experimental characterisation of components and circuits (both analogue and numerical) as well as mixed systems. Emphasis is placed on practical applications and the completion of projects.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>LELEC2532</td>
<td>Design and Architecture of analog electronic systems</td>
<td>Denis Bol, Denis Flandre</td>
<td>5</td>
<td>2q</td>
</tr>
<tr>
<td>LELEC2541</td>
<td>Advanced Transistors</td>
<td>Benoît Hackens, Jean-Pierre Raskin</td>
<td>5</td>
<td>2q</td>
</tr>
<tr>
<td>LELEC2570</td>
<td>Synthesis of digital integrated circuits</td>
<td>David Bol</td>
<td>5</td>
<td>2q</td>
</tr>
<tr>
<td>LELEC2580</td>
<td>Design of RF and microwave communication circuits</td>
<td>Christophe Craeye, Danielle Janvier</td>
<td>5</td>
<td>2q</td>
</tr>
<tr>
<td>LELEC2590</td>
<td>Seminars in electronics and communications</td>
<td>Denis Flandre, Isabelle Huynen, Jérôme Louveaux</td>
<td>3</td>
<td>2q</td>
</tr>
</tbody>
</table>

The student may select 15 to 30 credits from the following courses:

De 15 à 30 credits parmi

<table>
<thead>
<tr>
<th>Year</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LELEC252, LELEC2541, LELEC2570, LELEC2580, LELEC2590</td>
</tr>
<tr>
<td>2</td>
<td>LELEC252, LELEC2541, LELEC2570, LELEC2580, LELEC2590</td>
</tr>
</tbody>
</table>

Click on the course title to see detailed informations (objectives, methods, evaluation...).
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LELEC2620</td>
<td>Modeling and implementation of analog and mixed analog/digital circuits and systems on chip</td>
<td>David Bol</td>
<td>5</td>
<td>2q</td>
</tr>
<tr>
<td>LELEC2650</td>
<td>Synthesis of analog integrated circuits</td>
<td>Denis Flandre</td>
<td>5</td>
<td>1q</td>
</tr>
<tr>
<td>LELEC2660</td>
<td>Power electronics</td>
<td>Marc Bekemans</td>
<td>4</td>
<td>1q</td>
</tr>
<tr>
<td>LELEC2700</td>
<td>Microwaves</td>
<td>Danielle Janvier</td>
<td>5</td>
<td>1q</td>
</tr>
<tr>
<td>LELEC2760</td>
<td>Secure electronic circuits and systems</td>
<td>François-Xavier Standaert</td>
<td>5</td>
<td>2q</td>
</tr>
<tr>
<td>LELEC2811</td>
<td>Instrumentation and sensors</td>
<td>David Bol (coord.)</td>
<td>5</td>
<td>1q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laurent Francis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LGBIO2020</td>
<td>Bioinstrumentation</td>
<td>André Mouraux</td>
<td>5</td>
<td>1q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Michel Verleysen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MAJOR IN SYSTEMS AND CONTROL ENGINEERING

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGBIO2060</td>
<td>Modelling of biological systems</td>
<td>Frédéric Crevecoeur (compensates Philippe Lefèvre)</td>
<td>5</td>
<td>1q</td>
</tr>
<tr>
<td>LINMA2300</td>
<td>Analysis and control of distributed parameter systems</td>
<td>Denis Dochain</td>
<td>5</td>
<td>1q</td>
</tr>
<tr>
<td>LINMA2361</td>
<td>Nonlinear dynamical systems</td>
<td>Pierre-Antoine Absil</td>
<td>5</td>
<td>1q</td>
</tr>
<tr>
<td>LINMA2671</td>
<td>Advanced control and applications</td>
<td>Julien Hendrickx</td>
<td>5</td>
<td>1q</td>
</tr>
<tr>
<td>LINMA2875</td>
<td>System identification</td>
<td>Julien Hendrickx (Vincent Wertz (compensates Julien Hendrickx))</td>
<td>5</td>
<td>2q</td>
</tr>
<tr>
<td>LINMA2510</td>
<td>Mathematical ecology</td>
<td>Eric Deleersnijder (coord.)</td>
<td>5</td>
<td>2q</td>
</tr>
</tbody>
</table>

The student may select:
De 15 à 30 credits parmi

MAJOR IN DYNAMICS, ROBOTICS AND BIOMECHANICS

The goal of this major (which it shares with Master’s degree programs in electricity and electro-mechanics) is to give students a complete education in this field. All phases of the mechanical manufacturing process are studied from the design stage to putting manufacturing techniques into place to production planning and the organisation of workshops. In addition, students will learn about important technological techniques (machine parts) as well as solid mechanics (elasticity and plasticity) in order to master the processing, behaviour and use of common materials. Finally, attention is paid to methods used in the fields of automation and robotics.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGBIO2040</td>
<td>Biomechanics</td>
<td>Greet Kerckhofs</td>
<td>5</td>
<td>2q</td>
</tr>
<tr>
<td>LGCIV2042</td>
<td>Dynamics of structures</td>
<td>João Saraiva Esteves Pacheco De Almeida</td>
<td>5</td>
<td>2q</td>
</tr>
<tr>
<td>LMECA2170</td>
<td>Numerical Geometry</td>
<td>Vincent Legal Jean-François Remacle</td>
<td>5</td>
<td>1q</td>
</tr>
<tr>
<td>LMECA2215</td>
<td>Vehicle System Dynamics</td>
<td>Paul Fisette</td>
<td>5</td>
<td>1q</td>
</tr>
<tr>
<td>LMECA2355</td>
<td>Mechanical design in biomedical engineering</td>
<td>Greet Kerckhofs Ann Vankrunkelsven (compensates Benoit Raucant)</td>
<td>5</td>
<td>1q</td>
</tr>
<tr>
<td>LMECA2732</td>
<td>Introduction to robotics</td>
<td>Renaud Ronsse</td>
<td>5</td>
<td>2q</td>
</tr>
<tr>
<td>LMECA2802</td>
<td>Multibody system Dynamics</td>
<td>Paul Fisette</td>
<td>5</td>
<td>2q</td>
</tr>
</tbody>
</table>

The class LMECA 2732 may not be taken as part of this major by ELME (mechatronics)students. Students majoring in this field may select:
De 20 à 30 credits parmi
<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Lecturer(s)</th>
<th>Credits</th>
<th>Semesters</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINMA2875</td>
<td>System Identification</td>
<td>Julien Hendrickx, Vincent Wertz (compensates Julien Hendrickx)</td>
<td>5</td>
<td>2q</td>
</tr>
<tr>
<td>LMECA2335</td>
<td>Biorobotics</td>
<td>Renaud Ronsse</td>
<td>5</td>
<td>2q</td>
</tr>
</tbody>
</table>
MAJOR IN NUCLEAR ENGINEERING

As with the Master’s in civil electromechanical engineering with a specialization in energy as well as the Master’s in civil and mechanical engineering, the goal of this major is to offer an in-depth education in the principal aspects of nuclear engineering. Entry into this programme, which is primarily overseen by the Mol Centre of Nuclear Energy, is contingent on an evaluation of candidates’ skills based on the rules used for ERASMUS-SOCRATES exchange students. Further information about this major may be found on Mol’s website SCK-CEN.

Visit http://www.sckcen.be/BNEN/ for further information about course locations, hours and language. The student may select De 16 à 21 credits parmi

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor</th>
<th>Credits</th>
<th>Period</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMECA2600</td>
<td>Introduction to nuclear engineering and reactor technology</td>
<td>Hamid Aït Abderrahim</td>
<td>5</td>
<td>1q</td>
<td>1</td>
</tr>
<tr>
<td>LMECA2648</td>
<td>Nuclear thermal-hydraulics (Centre d'étude nucléaire-Mol)</td>
<td>Yann Bartosiewicz</td>
<td>5</td>
<td>1q</td>
<td>1</td>
</tr>
<tr>
<td>LBNEN2002</td>
<td>Introduction to Nuclear Physics & Measurements (Centre d'étude nucléaire-Mol)</td>
<td></td>
<td>3</td>
<td>1q</td>
<td>1</td>
</tr>
<tr>
<td>LBNEN2003</td>
<td>Safety of Nuclear Powerplants (Centre d'étude nucléaire-Mol)</td>
<td></td>
<td>5</td>
<td>2q</td>
<td>1</td>
</tr>
<tr>
<td>LBNEN2011</td>
<td>Radiation protection (Centre d'étude nucléaire-Mol)</td>
<td></td>
<td>3</td>
<td>1q</td>
<td>1</td>
</tr>
</tbody>
</table>
MAJOR IN AERONAUTICS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Hours</th>
<th>Credits</th>
<th>Year 1</th>
<th>Year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGCIV2041</td>
<td>Numerical analysis of civil engineering structures</td>
<td>Jean-François Remacle</td>
<td>30h+15h</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMECA2195</td>
<td>Gasdynamics and reacting flows</td>
<td>Miltiadis Papalexandris</td>
<td>30h+30h</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMECA2300</td>
<td>Advanced Numerical Methods</td>
<td>Philippe Chatelain, Christophe Craey, Vincent Legat, Jean-François Remacle</td>
<td>30h+30h</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMECA2323</td>
<td>Aerodynamics of external flows</td>
<td>Philippe Chatelain, Grégoire Winckelmans</td>
<td>30h+30h</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMECA2520</td>
<td>Calculation of planar structures</td>
<td>Issam Doghri</td>
<td>30h+30h</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMECA2550</td>
<td>Aircraft propulsion systems.</td>
<td>Philippe Chatelain, Yves Marichal (compenses Philippe Chatelain)</td>
<td>30h+30h</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMECA2660</td>
<td>Numerical methods in fluid mechanics</td>
<td>Grégoire Winckelmans</td>
<td>30h+30h</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMECA2830</td>
<td>Aerospace dynamics.</td>
<td>Philippe Chatelain, Pierre Schrooyen (compenses Philippe Chatelain)</td>
<td>30h+30h</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMECA2853</td>
<td>Turbulence.</td>
<td>Eric Deleersnijder, Grégoire Winckelmans</td>
<td>30h+30h</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The student shall select
De 20 à 30 credits parmi
MAJOR IN DESIGN, MANUFACTURING AND MECHANICS OF MATERIALS

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courses not taught during 2018-2019</td>
<td>Periodic courses not taught during 2018-2019</td>
</tr>
<tr>
<td>Periodic courses taught during 2018-2019</td>
<td>Activity with requisites</td>
</tr>
</tbody>
</table>

Click on the course title to see detailed informations (objectives, methods, evaluation...)

If the course LMECA1451 has not been taken during the bachelor, you must add it to your programme. The student shall select:

De 20 à 30 credits parmi

<table>
<thead>
<tr>
<th>Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Deformation and fracture of materials</th>
<th>Hosni Idrissi (compensates Thomas Pardoen) Thomas Pardoen</th>
<th>30h+30h</th>
<th>5 Credits</th>
<th>1q</th>
<th>x</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plasticity and metal forming</td>
<td>Laurent Delannay Thomas Pardoen</td>
<td>30h+22.5h</td>
<td>5 Credits</td>
<td>2q</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Rheology</td>
<td>Vincent Legat Evelyne Van Ruymbeke</td>
<td>30h+30h</td>
<td>5 Credits</td>
<td>1q</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Advanced manufacturing technologies</td>
<td>Aude Simar</td>
<td>30h+30h</td>
<td>5 Credits</td>
<td>1q</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Calculation of planar structures</td>
<td>Issam Doghri</td>
<td>30h+30h</td>
<td>5 Credits</td>
<td>2q</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Mechanics of composite materials</td>
<td>Issam Doghri</td>
<td>30h+30h</td>
<td>5 Credits</td>
<td>2q</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Welding</td>
<td>Pascal Jacques Aude Simar</td>
<td>30h+30h</td>
<td>5 Credits</td>
<td>1q</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

MAJOR IN BUSINESS CREATION AND MANAGEMENT

MAJOR IN BUSINESS RISKS AND OPPORTUNITIES

<table>
<thead>
<tr>
<th></th>
<th>De 16 à 20 credits parmi</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Introduction to financial and accounting management</th>
<th>André Nsabimana (compensates Gerrit Sarens) Gerrit Sarens</th>
<th>30h+15h</th>
<th>4 Credits</th>
<th>2q</th>
<th>x</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Elements of law for industry and research</td>
<td>Vincent Cassiers Werner Derijcke Bénédicte Ingels</td>
<td>30h</td>
<td>3 Credits</td>
<td>1q</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Organisation and human resources</td>
<td>John Cultiaux</td>
<td>30h</td>
<td>3 Credits</td>
<td>2q</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Introduction to management and to business economics</td>
<td>Benoît Gailly</td>
<td>30h+15h</td>
<td>4 Credits</td>
<td>2q</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Environment and business</td>
<td>Thierry Bréchet Jean-Pierre Tack (compensates Thierry Bréchet)</td>
<td>30h</td>
<td>3 Credits</td>
<td>1q</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>One course between</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Ethics and ICT</th>
<th>Axel Gossseries Olivier Pereira</th>
<th>30h</th>
<th>3 Credits</th>
<th>2q</th>
<th>x</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Business Ethics and Compliance Management</td>
<td>Carlos Desmet</td>
<td>30h</td>
<td>5 Credits</td>
<td>1q</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
Alternative to the major in business risks and opportunities for computer science students

Computer science students who have already taken courses in this field while pursuing their Bachelor’s degree may choose between 16-20 credits from the courses offered in the management minor for computer sciences.
MAJOR IN SMALL AND MEDIUM Sized BUSINESS CREATION

In keeping with most of the Masters’ degrees in civil engineering, the goal of this major is to familiarize the civil engineering student with the specifics of entrepreneurship and business development in order to develop the necessary abilities, knowledge and tools to create a business. It is a truly interdisciplinary initiative where students from different faculties are brought together in cross-disciplinary teams to create an entrepreneurial project. The Interdisciplinary program in entrepreneurship (CPME) is spread over two years and is integrated into more than 20 Masters (8 faculties). The program includes a collective and interdisciplinary master thesis focused on an entrepreneurial project (start-up or spin-off) and realized in teams of 3 to 4 students from 3 to 4 different faculties. The access is reserved for a small number of students by a selection procedure. Additional information may be found at www.uclouvain.be/cpme. This major is not available in English and may not be taken at the same time as the major “Business risks and opportunities”.

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Optional</th>
</tr>
</thead>
</table>

Courses not taught during 2018-2019
![Periodic courses not taught during 2018-2019](activity_with_requisites)

De 20 à 25 credits parmi

Required courses for the major in small and medium sized businesses

<table>
<thead>
<tr>
<th>Year</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructors</th>
<th>Credits</th>
<th>Periodic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LCPME2001</td>
<td>Entrepreneurship Theory (in French)</td>
<td>Frank Janssen</td>
<td>5</td>
<td>1q x</td>
</tr>
<tr>
<td>1</td>
<td>LCPME2002</td>
<td>Managerial, legal and economic aspects of the creation of a company (in French)</td>
<td>Yves De Cordt, Marine Falize</td>
<td>5</td>
<td>1q x</td>
</tr>
<tr>
<td>2</td>
<td>LCPME2003</td>
<td>Business plan of the creation of a company (in French)</td>
<td>Julie Hermans, Frank Janssen</td>
<td>5</td>
<td>2q x</td>
</tr>
<tr>
<td>2</td>
<td>LCPME2004</td>
<td>Advanced seminar on Enterpreneurship (in French)</td>
<td>Roxane De Hoe, Frank Janssen</td>
<td>5</td>
<td>2q x</td>
</tr>
</tbody>
</table>

Prerequisite CPME courses

Student who have not taken management courses during their previous studies must enroll in LCPME2000.

<table>
<thead>
<tr>
<th>Year</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructors</th>
<th>Credits</th>
<th>Periodic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LCPME2000</td>
<td>Venture creation financement and management I</td>
<td>Yves De Rongé, Olivier Giacomin</td>
<td>5</td>
<td>1q x</td>
</tr>
</tbody>
</table>
ELECTIVE COURSES

Students may complete their major course programme with courses from the list below without special permission.

ELECTIVE COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Credits</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>LELEC1930</td>
<td>Introduction to telecommunication</td>
<td>Jérôme Louveaux</td>
<td>4</td>
<td>2q</td>
</tr>
<tr>
<td>LELEC2753</td>
<td>Electrical Power Systems: Advanced Topics</td>
<td>Emmanuel De Jaeger</td>
<td>5</td>
<td>2q, x</td>
</tr>
<tr>
<td>LELEC2920</td>
<td>Communication networks</td>
<td>Sébastien Lugan (compensates Benoît Maq)</td>
<td>5</td>
<td>1q, x</td>
</tr>
<tr>
<td>LENV2007</td>
<td>Renewable energies</td>
<td>Xavier Draye Patrick Gerin (coord.) Hervé Jeanmart Geoffrey Van Moeseke</td>
<td>4</td>
<td>1q, x</td>
</tr>
<tr>
<td>LFSA2212</td>
<td>Innovation classes</td>
<td>Pierre Latteur Benoît Maq Jean-Pierre Raskin (compensates Pierre Latteur Benoît Rauc)</td>
<td>5</td>
<td>1q, x</td>
</tr>
<tr>
<td>LINMA2370</td>
<td>Modelling and analysis of dynamical systems</td>
<td>Jean-Charles Delvenne (coord.) Denis Dochain (compensates Jean-Charles Delvenne Denis Dochain)</td>
<td>5</td>
<td>1q, x</td>
</tr>
<tr>
<td>LMECA1451</td>
<td>Mechanical manufacturing.</td>
<td>Laurent Delannay Aude Simar</td>
<td>5</td>
<td>1q, x</td>
</tr>
<tr>
<td>LMECA2240</td>
<td>Testing of thermal machinery.</td>
<td>Hervé Jeanmart</td>
<td>2</td>
<td>2q, x</td>
</tr>
<tr>
<td>LMECA2325</td>
<td>Biomass conversion</td>
<td>Patrick Gerin Hervé Jeanmart</td>
<td>5</td>
<td>1q, x</td>
</tr>
<tr>
<td>LMECA2410</td>
<td>Mechanics of Materials</td>
<td>Laurent Delannay Aude Simar</td>
<td>5</td>
<td>2q, x</td>
</tr>
<tr>
<td>LMECA2420</td>
<td>Advanced topics in energetics.</td>
<td>Yann Bartosiewicz Hervé Jeanmart</td>
<td>3</td>
<td>2q, x</td>
</tr>
<tr>
<td>LMECA2645</td>
<td>Major technological hazards in industrial activity.</td>
<td>Denis Dochain Alexis Dubreux</td>
<td>3</td>
<td>2q, x</td>
</tr>
<tr>
<td>LMECA2771</td>
<td>Thermodynamics of irreversible phenomena.</td>
<td>Milladis Papalexandris</td>
<td>5</td>
<td>2q, x</td>
</tr>
<tr>
<td>LMECA2780</td>
<td>Introduction to Turbomachinery</td>
<td>Tony Arts</td>
<td>5</td>
<td>2q, x</td>
</tr>
<tr>
<td>LMECA2801</td>
<td>Machine design</td>
<td>Benoît Raucent Benoît Raucet (compensates Aude Simar) Thomas Servais Benoît Raucet (compensates Aude Simar)</td>
<td>5</td>
<td>1q, x</td>
</tr>
<tr>
<td>LEPL2351</td>
<td>Dynamique des groupes - Q1</td>
<td>Laurent Francis Benoît Raucet Piotr Sobieski (coord.) Vincent Wertz</td>
<td>3</td>
<td>1q, x</td>
</tr>
<tr>
<td>LEPL2352</td>
<td>Dynamique des groupes - Q2</td>
<td>Laurent Francis Benoît Raucet Piotr Sobieski (coord.) Vincent Wertz</td>
<td>3</td>
<td>2q, x</td>
</tr>
</tbody>
</table>
COURS AU CHOIX : COMPÉTENCES TRANSVERSALES ET CONTACT AVEC L’ENTREPRISE

<table>
<thead>
<tr>
<th>Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Mandatory

- **Courses not taught during 2018-2019**
- **Periodic courses taught during 2018-2019**
- **Activity with requisites**

Click on the course title to see detailed informations (objectives, methods, evaluation...)

De 3 à 21 credits parmi

- **Compétences transversales et contact avec l’entreprise**

L'étudiant choisit minimum 3 crédits parmi un stage, un ou plusieurs cours de l'option "Enjeux de l’entreprise", l'option "CPME", une UE d'activité professionnelle liée à la discipline

min=3 credits parmi

- **Internship**
 - LFSA2995 Company Internship
 - Jean-Pierre Raskin
 - 30h
 - 10 Credits
 - 1 + 2q
 - LFSA2996 Company Internship
 - 5 Credits
 - 1 + 2q

- **Professional integration activity specific to the program**

- **Communication**

L'étudiant choisit maximum 8 crédits visant le développement de ses compétences de communication

max=8 credits parmi

- **Languages**
 - LALLE2500 Professional development seminar German
 - Ann Rinder (coord.)
 - 30h
 - 3 Credits
 - 1 ou 2q
 - LALLE2501 Professional development seminar German
 - Ann Rinder (coord.)
 - 30h
 - 5 Credits
 - 1 + 2q
 - LESP2600 Vocational Induction Seminar - Spanish (B2.2/C1)
 - Paula Lorente Fernandez (coord.)
 - 30h
 - 3 Credits
 - 1q
 - LESP2601 Vocational Induction Seminar - Spanish (B2.2/C1)
 - Paula Lorente Fernandez (coord.)
 - 30h
 - 5 Credits
 - 1q
 - LNEER2500 Seminar of Entry to professional life in Dutch - Intermediate level
 - Isabelle Demeulenaere (coord.)
 - Mariken Smit
 - Quentin Zéques
 - 30h
 - 3 Credits
 - 1 ou 2q
 - LNEER2600 Seminar of entry to professional life in Dutch - Upper-Intermediate level
 - Isabelle Demeulenaere (coord.)
 - 30h
 - 3 Credits
 - 1 ou 2q

- **Group dynamics**
 - LEPL2351 Dynamique des groupes - Q1
 - Laurent Francis
 - Benoit Raucant
 - Piotr Sobieski (coord.)
 - Vincent Wertz
 - 15h+30h
 - 3 Credits
 - 1q
 - LEPL2352 Dynamique des groupes - Q2
 - Laurent Francis
 - Benoit Raucant
 - Piotr Sobieski (coord.)
 - Vincent Wertz
 - 15h+30h
 - 3 Credits
 - 2q

- **Autre UE non disciplinaires**

L'étudiant peut proposer maximum 8 crédits d'ouverture vers d'autres disciplines (maximum un cours BEST ou des UE hors EPL).

max=8 credits parmi
Course prerequisites

A document entitled en-prerequis-2018-elme2m.pdf specifies the activities (course units - CU) with one or more pre-requisite(s) within the study programme, that is the CU whose learning outcomes must have been certified and for which the credits must have been granted by the jury before the student is authorised to sign up for that activity.

These activities are identified in the study programme: their title is followed by a yellow square.

As the prerequisites are a requirement of enrolment, there are none within a year of a course.

The prerequisites are defined for the CUs for different years and therefore influence the order in which the student can enrol in the programme’s CUs.

In addition, when the panel validates a student’s individual programme at the beginning of the year, it ensures the consistency of the individual programme:

• It can change a prerequisite into a corequisite within a single year (to allow studies to be continued with an adequate annual load);
• It can require the student to combine enrolment in two separate CUs it considers necessary for educational purposes.

For more information, please consult regulation of studies and exams.

The programme's courses and learning outcomes

For each UCLouvain training programme, a reference framework of learning outcomes specifies the competences expected of every graduate on completion of the programme. You can see the contribution of each teaching unit to the programme's reference framework of learning outcomes in the document "In which teaching units are the competences and learning outcomes in the programme’s reference framework developed and mastered by the student?"

The document is available by clicking this link after being authenticated with UCL account.
Admission

General and specific admission requirements for this program must be satisfied at the time of enrolling at the university.

SUMMARY

• > Specific Admission Requirements
• > University Bachelors
• > Non university Bachelors
• > Holders of a 2nd cycle University degree
• > Holders of a non-University 2nd cycle degree
• > Adults taking up their university training
• > Access on the file
• > Admission and Enrolment Procedures for general registration

Specific Admission Requirements

This programme is taught in English with no prerequisite in French. The student is supposed to have at least a B2 level in the European Framework of Reference. A certificate is required for the holders of a non-Belgian degree, see selection criteria of the personalized access.

University Bachelors

<table>
<thead>
<tr>
<th>Diploma</th>
<th>Special Requirements</th>
<th>Access</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCLouvain Bachelors</td>
<td>Bachelor in Engineering</td>
<td>Direct Access</td>
<td>Students who have neither major nor minor in the field of their civil engineering Master’s degree may have an adapted master programme.</td>
</tr>
<tr>
<td>Others Bachelors of the French speaking Community of Belgium</td>
<td>Bachelor in Engineering</td>
<td>Direct Access</td>
<td>Students with a Bachelor’s degree in engineering sciences who have not taken the equivalent of a minor in the field of their civil engineering master degree may have an adapted master programme.</td>
</tr>
<tr>
<td>Bachelors of the Dutch speaking Community of Belgium</td>
<td>Bachelor in engineering</td>
<td>Access with additional training</td>
<td>Students who have no specialisation in the field of their civil engineering master degree may have an adapted master programme with up to 60 additional credits.</td>
</tr>
<tr>
<td>Foreign Bachelors</td>
<td>Bachelor in engineering</td>
<td>Bachelor degree of Cluster Institution</td>
<td>Direct Access</td>
</tr>
<tr>
<td></td>
<td>Bachelor in Engineering</td>
<td>For others institutions</td>
<td>Based on application: accepted, conditional on further training, or refusal</td>
</tr>
</tbody>
</table>

Non university Bachelors
Holdiers of a 2nd cycle University degree

<table>
<thead>
<tr>
<th>Diploma</th>
<th>Special Requirements</th>
<th>Access</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Licenciés"</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Masters

<table>
<thead>
<tr>
<th>Diploma</th>
<th>Special Requirements</th>
<th>Access</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masters in engineering</td>
<td></td>
<td>Direct Access</td>
<td></td>
</tr>
</tbody>
</table>

Holdiers of a non-University 2nd cycle degree

> Find out more about links to the university

Adults taking up their university training

> See the website Valorisation des acquis de l'expérience

It is possible to gain admission to all masters courses via the validation of professional experience procedure.

Access on the file

Reminder : all Masters (apart from Advanced Masters) are also accessible on file.

The first step of the admission procedure requires to submit an application online: www.uclouvain.be/en/study/inscriptions/futurs-etudiants.html.

Selection criteria are summarized here.

Admission and Enrolment Procedures for general registration
Teaching method

The majority of classes consist of lectures and tutorials. The tutors are upper-class students who have specialised tutor training (the class LFSA2351). This class provides its participants with practical tutoring techniques to help fellow students.

Methods that promote multidisciplinary studies

UCL’s Master’s degree programme in electro-mechanics is by nature multidisciplinary because it combines classes in electricity, mechanics, automation and computer sciences. It also includes non-engineering elective classes such as economics, management and languages.

Various teaching strategies

Through a pedagogy that prioritises projects that integrate several subjects, students gain critical thinking skills, which in turn allows them to design, model, and create electro-mechanical prototypes and systems.

In the last year of the programme, half of the time is devoted to the graduation project, which offers students the possibility of working as part of a research team or collaborating with the industrial sector to study a given subject in-depth. It provides an introduction to the actual working life of an engineer or researcher (thanks to the size of the project and the context within which it is carried out).

Diverse learning situations

Various pedagogical approaches are used: lectures, projects, exercise sessions, problem solving sessions, case studies, experimental laboratories, computer simulations, educational software, internships in industry or research, factory visits, seminars and group as well as individual work. In certain subjects, eLearning allows students to learn at their own pace and carry out virtual experiments.

These diverse learning situations permit students to build their knowledge in an iterative and progressive manner all the while developing their independence, organisational and time management skills as well as their ability to communicate. Students have access to the newest information technology (materials, software, networks) during their studies.

Evaluation

The evaluation methods comply with the regulations concerning studies and exams. More detailed explanation of the modalities specific to each learning unit are available on their description sheets under the heading “Learning outcomes evaluation method”.

Student work is evaluated according to University rules (see the rules for evaluating coursework and exams) namely written and oral exams, laboratory reports, individual or group work, public presentations of projects and theses defences.

ELME Evaluation Methods:

<table>
<thead>
<tr>
<th>Learning outcomes</th>
<th>Certificate-based evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrate mastery of a solid body of knowledge in basic science and engineering science allowing the student to learn and solve problems pertaining to electro-mechanics (Axis 1) Organize and carry out an applied engineering process to develop a product and/or service responding to a particular need or problem in the field of electro-mechanics. (Axis 2)</td>
<td>• End of the semester exam based on course exercises • Tests in some introductory classes</td>
</tr>
<tr>
<td>Organise and carry out a research project to learn about a physical phenomenon or a new problem relating to the field of electro-mechanics. (Axis 3)</td>
<td>• Report on mini project in field of study • Progress report on multidisciplinary project</td>
</tr>
<tr>
<td>Contribute, through teamwork, to a multidisciplinary project and carry out the project while taking into account its objectives, resources, and constraints. (Axis 4) Communicate effectively (speaking or writing in French or a foreign language) with the goal of carrying out assigned projects. (Axis 5) Display rigour, openness, and critical thinking; validate the socio-technical relevance of a hypothesis or a solution, all the while drawing upon available technological and scientific innovations. (Axis 6)</td>
<td>• Progress report on multidisciplinary project • Report, public presentation, and yearly work for graduation project</td>
</tr>
</tbody>
</table>

In certain instances, teaching is done through multidisciplinary project, the Learning by Problem Solving method (Apprentissage par problèmes or APP), flipped classes or seminars.

The certificate-based evaluation are coherent with the teaching methods and the learning outcomes.

The formative evaluation is achieved in part during the projects via tutor feedback and above all during the graduation project.

For more information on evaluation methods, students may consult the relevant evaluation descriptions.

Mobility and/or Internationalisation outlook

Since its creation, the Louvain School of Engineering (EPL) has participated in diverse exchange programs that were put into place at the European level and beyond.
Possible trainings at the end of the programme

Specialised Master’s Degrees

• Specialised Master’s Degree in Nanotechnology
• Specialised Master’s Degree in Nuclear Engineering
• Specialised Master’s Degree in Biotechnology and Applied Biology

Doctoral Programmes

Most doctoral students study at the Institute of Information and Communication Technologies, Electronics and Applied Mathematics as well as the Institute of Mechanics, Materials and Civil Engineering. The faculty of these Institutes participate in numerous doctoral programmes. A comprehensive list is available from the President of the Third Cycle Commission.

UCL Master’s degrees (about 60) are accessible to UCL Master’s degree holders

For example:

• The Master’s degree (120) in sciences and environmental management and the Master’s degree (60) in sciences and environmental management (automatic admission with possible complementary coursework)
• Different Master’s degree programmes in management (automatic admission based on written application): see this list
• The Master’s degree (60) in information and communication at Louvain-la-Neuve or the Master’s degree (60) in information and communication at Mons

Contacts

Curriculum Management

Entity

Structure entity
Denomination
Faculty
Sector
Acronym
Postal address

SST/EPL/ELME
(ELME)
Louvain School of Engineering (EPL)
Sciences and Technology (SST)
ELME
Place du Levant 3 - bte L5.03.02
1348 Louvain-la-Neuve

Academic supervisor: Hervé Jeanmart

Jury

• Président du Jury: Jean-Didier Legat
• Secrétaire du Jury - Energie: Paul Fisette
• Secrétaire du Jury - Mécatronique: Hervé Jeanmart

Usefull Contact(s)

• Secrétariat: Isabelle Dargent