Integrating the fields of mechanics and electricity is one of the major challenges of the civil engineering student in electro-mechanics.
The Master’s degree in Electro-mechanical engineering from UCL favours multidisciplinary training and the ability to solve interface problems raised by the integration of several fields. It integrates the fields of electricity and mechanics into a coherent whole and prioritises basic knowledge with the aim of deepening or reorienting students’ knowledge mid-career.
Students will acquire the knowledge and skills necessary to become:
- Specialists in mechatronics (electronics, mechanical production, automation and robotics) or specialists in energy (smart grids/energy networks, thermodynamics and energy).
- Individuals with field experience capable of putting into practice their knowledge of research and technology.
- Managers who can manage team projects
The Master’s degree programme in electro-mechanical engineering prepares its students to be aware of technical progress and adapt to the needs of the job market and changes in business.
Polytechnic and multidisciplinary, the training provided by the Louvain School of Engineering privileges the acquisition of knowledge that combines theory and practice and that is open to analysis, design, manufacturing, production, research and development and innovation all the while paying attention to ethics and sustainable development.
On successful completion of this programme, each student is able to :
- 1. Identifier et mettre en oeuvre les concepts, lois, raisonnements applicables à une problématique donnée faisant appel à plusieurs disciplines de la mécanique et de l'électricité :
- L'électricité (au sens large)
- L'énergie électrique (transport, qualité, gestion...)
- L'électrotechnique (conversion, commande, actionnement...)
- L'électronique (électronique digitale, instrumentation, capteurs...)
- L'automatique
- L'informatique (temps réel)
- La mécanique (modélisation, conception...)
- La thermodynamique et la thermique
- La dynamique des fluides et les transferts
- La robotique et l'automatisation
- Les systèmes énergétiques: production, distribution, chaleur et efficience énergétique
- 2. Identifier et utiliser les outils de modélisation et de calcul adéquats pour résoudre des problématiques liées aux disciplines (ci-dessus).
- 3. Vérifier la vraisemblance et confimer la validité des résultats obtenus au regard de la nature du problème posé, notamment en ce qui concerne les ordres de grandeurs et les unités dans lesquelles les résultats sont exprimés.
2.2. Modéliser le problème et concevoir une ou plusieurs solutions techniques en y intégrant les aspects mécaniques, électriques, électroniques, électrotechniques ou informatiques et répondant au cahier des charges.
2.3. Évaluer et classer les solutions au regard de l'ensemble des critères figurant dans le cahier des charges : efficacité, faisabilité, qualité ergonomie et sécurité dans l'environnement considéré (exemples : trop couteux, trop complexes, trop dangereux, trop difficile à manipuler).
2.4. Implémenter et tester une solution sous la forme d'une maquette, d'un prototype et/ou d'un modèle numérique.
3.1. Se documenter et résumer l'état des connaissances actuelles dans le domaine de la mécanique et de l'électricité.
3.2. Proposer une modélisation et/ou un dispositif expérimental (par exemple dans le domaine de la régulation thermique) en construisant d'abord un modèle mathématique, en réalisant à partir de celui-ci en laboratoire, un dispositif permettant de simuler le comportement du système, en testant les hypothèses qui y sont relatives.
4.2. S'engager collectivement dans un environnement pluridisciplinaire (mécanique et électricité) sur un plan de travail, un échéancier (environnement qui peut être conflictuel)
4.3. Fonctionner dans un environnement pluridisciplinaire, conjointement avec d’autres acteurs porteurs de différents points de vue, ou des experts venant des domaines ou spécialités différents en prenant le recul nécessaire pour dépasser les difficultés ou les conflits rencontrés au sein de l’équipe.
5.2. Argumenter et convaincre en s'adaptant au langage de ses interlocuteurs : techniciens, collègues, clients, supérieurs hiérarchiques.
5.3. Communiquer sous forme graphique et schématique ; interpréter un schéma, présenter les résultats d'un travail, structurer des informations.
5.4. Lire, analyser et exploiter des documents techniques (normes, plans, cahier des charges...)
5.5. Rédiger des documents écrits en tenant compte des exigences contextuelles et des conventions sociales en la matière.
6.2. Relativiser les solutions en élargissant le spectre à des enjeux non-techniques (le domaine de l'énergie et du climat, la prise en compte des aspects environnementaux et sociaux).
6.3. Faire preuve d'esprit critique vis-à-vis d'une solution technique, ou d'une approche méthodologique en regard de l'ensemble des parties prenantes impliquées.