PhD Defense: Particle Finite Element Method with mesh adaptation for modelling free surface flows in complex geometries by Thomas LEYSSENS (MEMA)
immc | Louvain-la-Neuve
The particle finite element method (PFEM) is a hybrid particle-mesh approach for simulating free-surface fluidflows, combining the accuracy of finite elements with the flexibility of a Lagrangian particle formulation. While particles track the geometric evolution of the domain, a mesh built on them enables solving the governing equations. However, continuous particle motion distorts the mesh and requires frequent re-meshing-a key challenge for robust and efficient PFEM simulations.
This thesis addresses these challenges by introducing a new adaptive mesh refinement algorithm, based on Delaunay triangulations, that improves free surface representation, volume conservation, and overall simulation quality in both two and three dimensions. Applications include bubble dynamics, landslide modelling with coupled discrete elements, and geomechanical simulations of unstable soil collapse, demonstrating the versatility of the proposed method.
Membres du jury:
- Prof.Jean-FrançoisREMACLE (UCLouvain), Promoteur
- Prof.Jean-PhilippePONTHOT (ULiège), Promoteur
- Prof.GrégoireWINCKELMANS (UCLouvain), Président
- Prof.HadrienRATTEZ (UCLouvain), Secrétaire
- Prof.JonathanLAMBRECHTS (UCLouvain)
- Prof.MassimilianoCREMONESI (Politecnico di Milano)
- Prof.AlessandroFRANCI(Universitat Politècnica de Catalunya)
Conference link (TEAMS):
https://teams.microsoft.com/l/meetup-join/19%3ameeting_ZGJkMWJhZDktMjM2OC00NDNjLTk1YWUtZmZkMGNjMDkyOTVk%40thread.v2/0?context=%7b%22Tid%22%3a%227ab090d4-fa2e-4ecf-bc7c-4127b4d582ec%22%2c%22Oid%22%3a%22b665b718-2a23-4ce5-8a64-b72ee4675384%22%7d
Évènement associé