Aleksandr Zinovev

Funding: Eurofusion + SCK-CEN
Supervisor(s): Laurent Delannay

Tungsten, selected as plasma-facing material for fusion reactors (such as ITER and DEMO), needs to possess high crack resistance and ductility under extreme operation conditions, such as high neutron flux and cyclic thermal load, which lead to material degradation. The objective of this project is to develop a finite element (FE) model capable to simulate mechanical behaviour of polycrystalline tungsten under tensile testing with the focus made on effect of test temperature and irradiation-induced defects. The input for the model is derived from experiments and lower-scale models, such as crystal plasticity (CP), molecular dynamics (MD) and dislocation dynamics (DD). A combination of FE and CP approach allows for investigation of mechanical behaviour of tungsten at the grain level.
The following scientific questions have to be addressed in the frame of this PhD project:
How does the heterogeneity of stress and strain within grains affect the cracking behaviour of tungsten under ITER-like heat loads? How can the impact of neutron irradiation defects be included in the CP model? What is the effect of texture on anisotropy of plastic deformation and fracture properties?
A macroscopic constitutive law, which describes plasticity of tungsten in the ITER-relevant temperature range, has already been constructed. Based on that, two papers have been published in peer-reviewed journals.

IMMC main research direction(s):
Computational science
Processing and characterisation of materials
Solid mechanics

finite elements
tungsten, fusion

Research group(s): MEMA
Collaborations: Dmitry Terentyev, SCK-CEN (Belgium); IMDEA (Spain)


Recent publications

See complete list of publications

Journal Articles

1. Bakaev, A.; Zinovev, Aleksandr; Terentyev, D.; Bonny, G.; Yin, Chao; Castin, N.; Mastrikov, Yu. A.; Zhurkin, E. E. Interaction of carbon with microstructural defects in a W-Re matrix: An ab initio assessment. In: Journal of Applied Physics, Vol. 126, no.7, p. 075110 (2019). doi:10.1063/1.5094441.

2. Zinovev, Aleksandr; Iskandarov, Albert; Dmitriev, Sergey; Pshenichnyuk, Anatoly. Criteria of instability of copper and aluminium perfect crystals subjected to elastic deformation in the temperature range 0 – 400 K. In: Letters on Materials, Vol. 9, no.3, p. 265-269 (2019). doi:10.22226/2410-3535-2019-3-265-269.

3. Xiao, Xiazi; Terentyev, D.; Bakaev, A.; Zinovev, Aleksandr; Dubinko, A.; Zhurkin, E.E. Crystal plasticity finite element method simulation for the nano-indentation of plasma-exposed tungsten. In: Journal of Nuclear Materials, Vol. 518, no., p. 334-341 (2019). doi:10.1016/j.jnucmat.2019.03.018.

4. Xiao, Xiazi; Terentyev, D.; Ruiz, A.; Zinovev, Aleksandr; Bakaev, A.; Zhurkin, E.E. High temperature nano-indentation of tungsten: Modelling and experimental validation. In: Materials Science and Engineering: A, Vol. 743, no.-, p. 106-113 (2019). doi:10.1016/j.msea.2018.11.079.

5. Bakaeva, A.; Makhlai, V.; Terentyev, D.; Zinovev, Aleksandr; Herashchenko, S.; Dubinko, A. Correlation of hardness and surface microcracking in ITER specification tungsten exposed at QSPA Kh-50. In: Journal of Nuclear Materials, Vol. 520, no.-, p. 185-192 (2019). doi:10.1016/j.jnucmat.2019.04.008.

6. Terentyev, D.; Riesch, J.; Lebediev, S.; Khvan, T.; Zinovev, Aleksandr; Rasiński, M.; Dubinko, A.; Coenen, J.W. Plastic deformation of recrystallized tungsten-potassium wires: Constitutive deformation law in the temperature range 22–600 °C. In: International Journal of Refractory Metals and Hard Materials, Vol. 73, no., p. 38-45 (2018). doi:10.1016/j.ijrmhm.2018.01.012.

7. Grigorev, Petr; Zinovev, Aleksandr; Terentyev, Dmitry; Bonny, Giovanni; Zhurkin, Evgeny E.; Van Oost, Guido; Noterdaeme, Jean-Marie. Molecular dynamics simulation of hydrogen and helium trapping in tungsten. In: Journal of Nuclear Materials, Vol. 508, no.-, p. 451-458 (2018). doi:10.1016/j.jnucmat.2018.05.052.

8. Zinovev, Aleksandr; Bapanina, M. G.; Babicheva, R. I.; Enikeev, N. A.; Dmitriev, S. V.; Zhou, K. Deformation of nanocrystalline binary aluminum alloys with segregation of Mg, Co and Ti at grain boundaries. In: Physics of Metals and Metallography, Vol. 118, no.1, p. 65-74 (2017). doi:10.1134/s0031918x16110144.

9. Zinovev, Aleksandr; Terentyev, D; Delannay, Laurent. Finite element analysis of heat load of tungsten relevant to ITER conditions. In: Physica Scripta : an international journal for experimental and theoretical physics, Vol. T170, p. 014002 (2017). doi:10.1088/0031-8949/2017/T170/014002.

10. Zinovev, Aleksandr; Terentyev, Dmitry; Dubinko, Andrii; Delannay, Laurent. Constitutive law for thermally-activated plasticity of recrystallized tungsten. In: Journal of Nuclear Materials, Vol. 496, p. 325-332 (2017). doi:10.1016/j.jnucmat.2017.09.044.


1. Zinovev, Aleksandr. Crystal plasticity modelling of thermomechanical fatigue in ITER relevant tungsten, prom. : Delannay, Laurent, 03/10/2019.