Ongoing research projects


Ongoing research projects in iMMC (March 2023)

This a short description of research projects which are presently under progress in iMMC.
Hereunder, you may select one research direction or choose to apply another filter:

Biomedical engineering

Computational science

Civil and environmental engineering

Dynamical and electromechanical systems


Fluid mechanics

Processing and characterisation of materials

Chemical engineering

Solid mechanics

Research direction:
Listed keyword:
Other keyword:

List of projects related to: electromechanical device

Traction2020, Ecoptine
Researcher: Virginie Kluyskens
Supervisor(s): Bruno Dehez

The aim of the project "TRACTION 2020 - Development of a high efficiency and high reliability railway traction" is the reduction of the consumption of electrical energy in railway traction. The hope is to improve by about 5% the efficiency of the traction chain, while also keeping in mind criteria like reliability, price and life cycle cost. In this context, our research concerns more specifically two components of the traction chain: (i) the electric motor converting the electrical energy into mechanical energy: a synchronous reluctance motor and (ii) the magnetic gear inserted between the motor and the axle of the boogie. Our objective is to propose the optimal electromagnetic design for these two components.

The aim of the project "ECOPTINE - Energy aCcumulation for Optimization of electrical Traction INfrastructure Efficiency" is to ensure an optimal (and renewable) source of energy for rail traction, thus allowing a gain in terms of cost and performance. It aims to design an energy accumulation and storage solution (via a flywheel) as well as a system for connection to the energy distribution network. In this context our research concerns the passive magnetic bearing system of the flywheel.

Development of self-bearing machines with hybrid magnetic suspension and PCB windings for cutting-edge applications
Researcher: Joachim Van Verdeghem
Supervisor(s): Bruno Dehez

The aim of this project is to propose and validate the first self-bearing electric machine that requires no sensors, power electronics and control specifically dedicated to the rotor magnetic levitation while operating both at low and high speeds.

Captive Trajectory System for the handling of wake-impacted flow devices
Researcher: Emile Moreau
Supervisor(s): Renaud Ronsse, Philippe Chatelain

The main objective of the thesis is to develop a Captive Trajectory System (CTS) for the handling of wake-impacted flow devices that are free flying or swimming, such as aircrafts or bio-inspired robots. Which means that there is no other external force applied on those models, barring gravity, than the one applied by the fluid.
The envisioned facility will be unique at an international level. At the same time, its scope of applications will be quite wide, covering, but not limited to, applied and fundamental fluid mechanics (fluid-structure interaction problems), biomechanics (biolocomotion), and civil engineering (wind or flow-structure interactions). Additionally, we see this project as a first foray into the emerging field of experimental studies augmented by Artificial Intelligence or co-simulation.
Nowadays, this is not experimentally achievable by the use of Lab facilities, because they only allow, at most, horizontal and vertical displacements and do not feature any force or motion control. Hence, the goal of this thesis, of a rather experimental nature, is to design a robotic system – possibly partially immersed – whose precision, sensing and control capabilities will be able to handle free-moving devices, and to validate fluid-structure interaction models developed by various IMMC research teams, also involved in the project.

Study of slotless homopolar hybrid active magnetic bearings
Researcher: Guillaume Colinet
Supervisor(s): Bruno Dehez

Active magnetic bearings (AMB) generate a contact-free guiding of a rotor by actively controlling the current flowing in a winding. Compared with other bearings, AMB have the advantages to create very low friction as well as to operate without lubrication and mechanical wear.
Among the various topologies of AMB, the one under study allows to theoretically remove the iron losses in the rotor which makes
it attractive for applications in the vacuum or at very high-speed.

Development of thermo-tensile nano devices operating ex situ or in situ in transmission electron microscopes (TEM)
Researcher: Alex Pip
Supervisor(s): Hosni Idrissi

The main goal of my research project is to develop modern miniaturized devices dedicated to quantitative small-scale thermo-tensile testing in-situ inside a transmission electron microscope. These unique devices will be used to investigate the effect of T on the plasticity/failure mechanisms in selected materials, nanocrystalline palladium films and olivine. My project builds up on already existing MEMS devices, namely the commercial Push-to- Pull from Bruker.Inc and UCLouvain’s ‘lab-on-chip’ nano tensile testing devices. Currently, those devices are limited to room temperature experiments. My work will be dedicated to the integration of heating systems inside these two devices, in order to heat samples up to hundreds of °C. This will allow performing in-situ TEM thermo-tensile tests on Pd films and olivine samples where the coupling between tensile loading and heating could lead to unprecedented results regarding the effect of T on the mechanical response and the plasticity/failure mechanisms.

This project has a direct application in the field of geology, as one of the selected material is olivine, the material that makes up most of the upper part of the Earth’s mantle. Thermo-tensile testing of olivine at the micro/nano scale will bring crucial data about its rheology under conditions similar to the Earth’s mantle. This part of the project involving olivine will be performed in close contact with prof. Patrick Cordier and his team at UMET (Université de Lille). The other selected material is Pd, a material that is well known by the UCLouvain’s IMMC researchers used here as a benchmark. I will mostly work within the WINFAB platform, where I will develop and build the new thermo-tensile devices using the nanofabrication equipment. As theses devices are expected to be used in-situ inside a TEM, I will also partly work at the EMAT research center (UAntwerpen).

Nouvelles topologies et stratégies de commande de machines autoportantes à suspension électrodynamique
Researcher: Adrien Robert
Supervisor(s): Bruno Dehez

A fully passively bearingless motor using electrodynamic suspension have been developped by Joachim Van Verdegheme and Bruno Dehez. During my master thesis, I modeled the behaviour of the machine using ferromagnetic materials which add variation of the inductances coefficients. These materials should increase the perfomances of the motor, and add new possibilities of control. My thesis aims to find the best way to add these ferromagnetic materials in the design of the motor and take advantage of these new control possibilities to improve the machines performances.