Ongoing research projects

IMMC

Ongoing research projects in iMMC (August 2022)


This a short description of research projects which are presently under progress in iMMC.
Hereunder, you may select one research direction or choose to apply another filter:

Biomedical engineering

Computational science

Civil and environmental engineering

Dynamical and electromechanical systems

Energy

Fluid mechanics

Processing and characterisation of materials

Chemical engineering

Solid mechanics


Research direction:
Listed keyword:
Other keyword:
Division:
Supervisor:

List of projects related to: eletric energy systems




Techno-economic viability of variable-speed pumped-storage hydropower based on centrifugal pumps used as turbines
Researcher: Thomas Mercier
Supervisor(s): Emmanuel De Jaeger

This research takes place in the frame of SmartWater, a 3.5-year research project funded by the Walloon region, Belgium, and whose goal is to investigate the conversion of former mines and quarries into pumped-storage hydropower (PSH) sites, taking advantage of existing cavities. The project involves several academic and industrial partners, among which Laborelec, Electrabel and Cofely, as well as sponsors, including Ores, Elia, Charmeuse and Ensival-Moret. The SmartWater project is divided in several work packages, ranging from the geological study of potential mines and quarries, to the economical and electromechanical aspects of pumped-storage hydropower.



Generating energy transition pathways- application to Belgium
Researcher: Gauthier Limpens
Supervisor(s): Hervé Jeanmart

The transition towards more sustainable, fossil-free energy systems is interlinked with a high penetration of stochastic renewables, such as wind and solar.
Integrating these new energy resources and technologies will lead to profound structural changes in energy systems, such as an increasing need for storage and a radical electrifcation of the heating and mobility sectors.
To capture the increasing complexity of such future energy systems, new
flexible and open-source optimization modelling tools are needed.In collaboration with EPFL (Ecole Polytechnique Fédérale de Lausanne), we develop EnergyScope, a new open-source energy model for strategic energy planning of urban and national energy systems.
We applied our methodolgy to Switzerland and Belgium. During the end of the thesis, we are developping a transition pathway model representing the transition from 2015 until a long term target (such as 2050) with intermediary steps. The technologies merit order and the total cost of the transition will be key results.
In addition, other studies are under investigation (by master thesis or myself) about more countries, a multi-cells versions, an urban version, model coupling (EnergyScope-DispaSET), create an educational interface for citizens and policy makers or apply the model for uncertainty characterisation.



Robust optimisation of the pathway towards a sustainable whole-energy system: role of synthetic fuels
Researcher: Xavier Rixhon
Supervisor(s): Francesco Contino, Hervé Jeanmart

Securing energy supply while mitigating the anthropogenic greenhouse gas emissions embodies one of the biggest challenges of today’s -and tomorrow’s- society. In this perspective, renewable energies, mainly wind and solar, will be extensively installed. However, these resources per se present a time and space disparity which generally leads to a mismatch between supply and demand. Therefore, to harvest their maximum potentials, the energy system shall become more flexible, especially through the storage of this renewable electricity. The integration of electro-fuels seems to be a promising solution. They could play the role of long-term storage of electricity and energy carriers to supply other sectors (e.g. heat or mobility). To address the question of the role of these fuels in the energy transition, a multi-energy and multi-sector model, Energy Scope TD (ESTD), will be further developed. It optimizes the design of an energy system to minimize its costs and emissions. Defining an energy transition strategy for a large-scale system, such as a country, implies decisions with long-term impacts (20 to 50 years) and, hence, many uncertainties. To perform the uncertainty quantification (UQ), ESTD will be complemented with a surrogate-assisted UQ framework. The perspective of this project is then to provide the designers and the decision-makers with optimized energy system designs, including the knowledge we have on the uncertainties, in order to pave a robust pathway towards sustainability.