Ongoing research projects


Ongoing research projects in iMMC (July 2020)

This a short description of research projects which are presently under progress in iMMC.
Hereunder, you may select one research direction or choose to apply another filter:

Biomedical engineering

Computational science

Civil and environmental engineering

Dynamical and electromechanical systems


Fluid mechanics

Processing and characterisation of materials

Chemical engineering

Solid mechanics

Research direction:
Listed keyword:
Other keyword:

List of projects related to: microstructure-processing relationships

Development of high-toughness cryogenic alloys
Researcher: Alvise Miotti Bettanini
Supervisor(s): Pascal Jacques

Materials that can perform at extremely low temperatures are in great demand. Applications span from tanks and pressure vessels for LNG (Liquefied Natural Gas) carriers to structural materials in extreme conditions, like the upcoming exploration of Mars. In this context, it is critical to ensure very high toughness, which measures the resistance to crack propagation, at cryogenic temperatures. In this project, the experimental development of Fe-based superalloys is guided by a CALPHAD-based methodology, which allows the calculation of phase stability and phase transformation with computational models in order to reduce the experimental effort and hasten the development cycle of new materials.

Researcher: Valentin Marchal-Marchant
Supervisor(s): Pascal Jacques

obtained his degree in engineering in materials science from the Université catholique de Louvain in 2011. Then, he accomplished his PhD under the supervision of prof. Pascal Jacques, on the study of Physical Vapor Deposition of thick copper films on steel.

His research is now focused on the development of thermoelectric materials and thermoelectric generators for energy harvesting and passive electromechanical systems. It aims at using common and non-toxic materials to generate electrical power from thermal gradients. Nowadays, attention is put on large scale applications owing to more than 7 years of research about thermoelectric materials leaded in IMAP.

The big challenge of this topic is the development of new tools and equipments for material production and assembly, and specific characterization methods. Such a wide range of different tasks can only be achieved thanks to the versatility of technical and scientific expertises of the IMAP team members as well as Lacami support.

Surface mechanical treatment by friction stir processing of additive manufactured aluminium alloy parts to improve mechanical behaviour
Researcher: Juan Guillermo Santos Macias
Supervisor(s): Aude Simar, Pascal Jacques

This research project aims at improving the mechanical behaviour of additive manufactured parts through a friction stir processing (FSP) surface mechanical treatment. This post-processing method significantly enhances ductility and is expected to also enhance fatigue resistance. Fatigue is a critical phenomenon in many applications, e.g. structural parts in the aerospace industry. More specifically, this research is focused on studying the effect of FSP on the microstructure (porosity and second phase size and spatial distribution) and mechanical behaviour (residual stresses and fatigue) of selective laser melting AlSi10Mg parts. Furthermore, in order to define an adequate FSP patterning strategy, the project will also feature an analysis of the influence of processing parameters through a chained thermal and microstructural model.

Aerostream and IAWATHA (additive manufacturing), LOCOTED (thermoelectrics)
Researcher: Camille van der Rest
Supervisor(s): Pascal Jacques, Aude Simar

Camille van der Rest completed her PhD thesis on the optimisation of Heusler Fe2VAl-based thermoelectric compounds through innovative metallurgical processing in 2015. It was under the joint supervision of Prof. Pascal Jacques and Prof. Aude Simar. Her research topics now concern thermoelectric materials, additive manufacturing and friction stir processing technologies. Concerning thermoelectrics, the main objective is the development of low-cost, non-toxic, and powerful materials that could be used in large-scale industrial applications of heat recovery. In addition, she studies some fundamental aspects in order to improve the performances of such materials, i.e. ordering phenomena in off-stoichiometric Fe2VAl-based Heusler compounds. It is essential to make the link between (innovative) manufacturing processes, microstructures and the functional properties of these TE materials. Concerning additive manufacturing, the main contributions are on the characterisation and optimisation of the microstructures and the mechanical behaviour of Al parts obtained by Selective Laser Melting and the developpment of new materials for additive manufacturing. Again, the link between the process parameters and the final microstructure/properties is a key issue. Finally, Camille developed, together with Prof. Aude Simar and Prof. Pascal Jacques, a novel Friction Melt Bonding (FMB) process in order to weld aluminium alloys and steels. This process is still under development thanks to the collaboration with other researchers of IMAP.

Deformation and failure of polymeric and metallic glasses
Researcher: Frederik Van Loock
Supervisor(s): Thomas Pardoen

My research work is focused on the deformation and fracture of (glassy) polymeric materials and polymer-based hybrid material concepts such as polymeric foams, adhesive joints, and fibre-reinforced polymer composites. Some current research topics include:
i) The development of a mesoscale constitutive finite element model based on the concept of shear transformation zones (STZs) for glassy materials (polymers and metals). The STZ model allows to predict the complex large deformation response of glassy polymers, including post-yield softening and non-linear unloading behaviour, by calibration of a few parameters via experiments on the polymer of interest. The model also sheds light on the interactions between discrete and elementary distortion mechanisms (and their collective organisation) during plastic deformation of polymeric glasses. Ongoing research with the STZ model includes ageing (and mechanical rejuvenation) of polymers, viscoelastic effects, and the effect of confinement due to the presence of fibres on the constitutive response of glassy polymers. The STZ modelling approach is also being used to study deformation and fracture of confined layers of metallic glasses.
ii) Fracture problems in polymers and fibre-reinforced polymer composites.
iii) The development of a thermochemical model for the in-situ polymerization of a thermoplastic matrix in a fibre-reinforced polymer composite (PhD work of Sarah Gayot).
iii) Fracture problems in solder joints subjected to thermal cycling (PhD work of Vincent Voet).