Ongoing research projects

IMMC

Ongoing research projects in iMMC (August 2020)


This a short description of research projects which are presently under progress in iMMC.
Hereunder, you may select one research direction or choose to apply another filter:

Biomedical engineering

Computational science

Civil and environmental engineering

Dynamical and electromechanical systems

Energy

Fluid mechanics

Processing and characterisation of materials

Chemical engineering

Solid mechanics


Research direction:
Listed keyword:
Other keyword:
Division:
Supervisor:

List of projects related to: process intensification




Vortex Chamber Spray Dryer
Researcher: Thomas Tourneur
Supervisor(s): Juray De Wilde

High-G operations in vortex chamber allow to intensify transfer of mass, heat and momentum. This technology can be applied for treating particles (solid powder or liquid droplets in a precursor state) with, preferably, a rotating fluidized bed in various industrial fields like coating, granulation or spray drying. In the presented work, a first pilot unit is designed with the objective to create a multi-zone environment with axial separation in order to fed air into the reactor at different temperatures to improve the process of drying. Numerical simulations are run simultaneously to validate the model used and once accepted to predict new design effect without going through the experimental study. Different designs for the vortex chamber are tested to study their effect on the vortex flow pattern.



HyFlux
Researcher: Quentin de Radiguès de Chennevières
Supervisor(s): Joris Proost

is working in the field of the energy transition. In order to increase the share of renewable energies, new ways of storing electricity have to be developed. Hydrogen has the advantage to be able to store energy over a long time while it can be used as fuel for vehicles. In his Ph.D. thesis on Process Intensification in electrochemical reactors defended in december 2016, he has developed a new technology to reduced the cost of alcaline water electrolysis for hydrogen production. He is now applying this technology on a pilot plant scale.



Multi-scale modeling of a structured catalytic reactor for steam methane reforming
Researcher: Florent Minette
Supervisor(s): Juray De Wilde

Methane reforming is the most widely practiced process for the production of hydrogen and syngas. The process is however strongly limited by heat transfer between the furnace and the process gas, pressure drop and intra-particle diffusion limitations. Structured catalytic reactors are promising in order to intensify the process and deal with the limitations encountered in conventional reformers.
The multi-scale modeling of ZoneFlow structured catalytic reactors is addressed. The intrinsic reaction kinetics is experimentally studied in a micro-packed bed reactor. The Langmuir-Hinshelwood-Hougen-Watson-type rate equations are derived and non-linear regression is applied to estimate the rate parameters. A pseudo-continuum approach description of the catalyst coating is used to account for intra-catalyst diffusion limitations. The complex flow pattern is described by means of a CFD model. To bridge the scales of turbulence, the RANS approach is adopted and the k-epsilon turbulence model is applied. Thermal conduction and radiative heat transfer are included. The reactor model is validated using specific experiments including cold flow pressure drop, inert heat transfer and pilot plant tests under reactive conditions.
The developed model is then used to study and optimize the performance of ZoneFlow reactors under commercial operating conditions.



High performance membranes for CO2 capture involving advance materials and biomimicking Nature
Researcher: Cristhian Molina Fernandez
Supervisor(s): Patricia Luis Alconero

Global warming is a major problem of our current society. Since our energy demand is continuously increasing it is still expected to rely on fossil fuel supply in the following years. That is why much effort has been dedicated to find industrially feasible solutions to recover the CO2 present in flue gases. This research project aims to provide more and better solutions for CO2 capture and reutilization using membrane technology involving advance materials and biomimicking Nature.