Ongoing research projects

IMMC

Ongoing research projects in iMMC (May 2023)


This a short description of research projects which are presently under progress in iMMC.
Hereunder, you may select one research direction or choose to apply another filter:

Biomedical engineering

Computational science

Civil and environmental engineering

Dynamical and electromechanical systems

Energy

Fluid mechanics

Processing and characterisation of materials

Chemical engineering

Solid mechanics


Research direction:
Listed keyword:
Other keyword:
Division:
Supervisor:

List of projects related to: soil mechanics




A phase-field discrete elements model applied to granular material
Researcher: Alexandre Sac-Morane
Supervisor(s): Hadrien Rattez

The main goal of the research project is to combine a phase-field modelization with a discrete elements modelization. This new approach is then applied to granular material to investigate the effects of the environment. A model is built and will be calibrated by experiments.



Influence of soil saturation on earthen embankments failure by overtopping
Researcher: Nathan Delpierre
Supervisor(s): Sandra Soares Frazao, Hadrien Rattez

In the current context of climate change and aging infrastructure, the failure of earthen dikes is becoming a
critical issue. Dikes have an essential protection role in flood defense, coastal protection or for the storage of
mining industry waste. The objective of the research is to develop and validate a simulation model to take into
account the effect of
saturation of the dike material on its stability when it is subjected to overtopping flows, which alone cause 34%
of failures (Costa, 1985). For this purpose, a complete simulation model will be developed, taking into account
the internal and external flows as well as the erosion and the consequences on the evolution of the stability of
the dam. The originality of this project lies in the multidisciplinary approach that takes into account the
evolution of the dike both from a hydraulic and hydrogeological point of view (water content, flow velocity and
surface erosion) but also from the point of view of the geomechanics and thus of the intrinsic stability of the
dike. Laboratory experiments will be carried out in order to validate the model experimentally. At this level, the
novelty brought by this project is the control of the evolution of the water content of the dike in real time with
pressure gauges and tensiometers. The acquired data will allow to calibrate the model and to confirm the key
role of the initial saturation in the dam failure.
Finally, based on the critical characteristics defined in terms of dike saturation, a study on large-scale
monitoring techniques will be carried out. In particular, the possibility of using technologies such as
photogrammetry or GPR (Ground Penetrating Radar) to determine the degree of saturation of a soil will be
investigated in the context of dike monitoring.