Ongoing research projects

IMMC

Ongoing research projects in iMMC (December 2019)


This a short description of research projects which are presently under progress in iMMC.
Hereunder, you may select one research direction or choose to apply another filter:

Biomedical engineering

Computational science

Civil and environmental engineering

Dynamical and electromechanical systems

Energy

Fluid mechanics

Processing and characterisation of materials

Chemical engineering

Solid mechanics


Research direction:
Listed keyword:
Other keyword:
Division:
Supervisor:

List of projects related to: thin films




Viscoplasticity and strain localization in metallic thin films
Researcher: Guerric Lemoine
Supervisor(s): Laurent Delannay, Thomas Pardoen

Metallic thin films are widely used in the microelectronic industry and for surface functionalization. Owing to their very fine microstructure, thin films generally suffer of a lack of ductility and are prone to creep at room temperature. To avoid such detrimental effects in applications, their mechanical behaviors have to be characterized and modeled. Combining both experiments and simulations, my doctoral research focus on the rate dependent plasticity and the strain localization of metallic thin films. The Lab-on-chip technique is used to characterize the yield stress, the ductility, the hardening behavior and the strain rate sensitivity of Ni thin films. A localized necking model is also developed, dedicated to thin films and nano crystalline metals which aims at accounting for strain gradient plasticity effects, for grain size dependent strength, rate sensitivity and the possible contribution of creep/relaxation mechanisms. A dislocation-based crystal plasticity model has also been developed in order to study the mechanical and creep/relaxation behavior of the polycrystalline Pd thin films with high initial defect concentration, obtained by M-S Colla during her PhD thesis.



Nanostructured porous nickel electrodes for photo-electrochemical hydrogen production
Researcher: Adeline Delvaux
Supervisor(s): Joris Proost

Adeline obtained her master in Chemical and Materials Engineering at Université catholique de Louvain (Belgium) in 2014. Since then, she is working under the supervision of Prof. Joris Proost on the hydrogen production by water electrolysis with the view to replace actual energy sources by cleaner ones. The goal of her research consists in improving the electrochemical cell efficiency by tailoring nickel electrodes in order to favor gas bubble detachment and then reduce the overpotential due to mass transport. This is done by depositing Al-Ni alloys by magnetron co-sputtering, and then by chemically treating these alloys in a concentrated hydroxide solution with the aim of leaching out the Al. Another aspect of her research focus on the hydrogen absorption by nickel electrode during hydrogen evolution reaction. It consists in studying the hydriding mechanisms of Ni thin film electrodes into aqueous medium as well as characterize their internal stresses and microstructure effects as a function of their processing conditions since they influence kinetics and thermodynamics of hydriding.



Coupled mechanical-electrical effects in highly strained Ge thin films
Researcher: Marie-Stéphane Colla
Supervisor(s): Thomas Pardoen

Graduated in chemical and materials science engineering at the Université catholique de Louvain in 2009 (Belgium). Then, under the supervision of Prof. Thomas Pardoen (iMMC) and Prof. Jean-Pierre Raskin (ICTEAM), she accomplished a PhD on the study of the mechanical properties of thin films, more specifically on the plasticity and creep of freestanding nanocrystalline Pd films. The lab-on-chip technique developed previously at the UCL was adapted to deform Pd thin films. After the PhD, she worked for more than two years at the CRM Group in Liège on the development of industrially viable thin film solar cells on steel. From June 2016 to September 2018, she is back at the UCL as a research engineer involved in projects dealing with the understanding of fracture behaviour of high strength steels under a wide range of strain rates.​ In 2018, she received a 'Chargée de recherches - FNRS grant' and is now working on coupled mechanical-electrical effects in highly strained germanium thin films. Germanium is a promising material for optoelectronic device owing to its compatibility with the standard complementary metal-oxyde-semiconductor (CMOS) technology and to the possibility to convert it into a direct bandgap semiconductor by straining it.



BIODEC, STOCC
Researcher: Audrey Favache
Supervisor(s): Thomas Pardoen

obtained a PhD degree in the domain of process control in 2009 at Université catholique de Louvain (Belgium), after having graduated there as chemical engineer in 2005. Since then, she is working as a "senior" researcher on several applied research projects in collaboration with the industry in the domain of mechanics of materials. More particularly, she is interested in the link between the mechanical properties of the individual components of a complex system and the global mechanical response of this system. She applied this approach to the framework of tribology and contact mechanics for understanding the scratch resistance of coatings and multilayered systems. Her work covers both experimental aspects and finite element simulations.



Renforcement des capacités de RDI des organismes de recherche dans les domaines utiles aux PME
Researcher: Michaël Coulombier
Supervisor(s): Thomas Pardoen

graduated as a material science engineer from UCL in 2006. He finished his PhD in 2012 under the supervision of Prof. Thomas Pardoen (iMMC) and Prof. Jean-Pierre Raskin (ICTEAM) developing a lab on-chip technique for nano-mechanical characterisation of thin films. Since then he has been a research assistant in iMMC involved in various projects dealing with material science, nanomechanical testing and tribology.



On a chip fracture mechanics test method
Researcher: Sahar Jaddi
Supervisor(s): Thomas Pardoen

The aim of this research is to develop a new testing method based on an-on-chip concept to measure the fracture toughness of freestanding submicron films. This device consists of two major components, a notched specimen and two actuators. When the test structure is released by etching the sacrificial layer, the two actuators contract, this in turn loads the specimen in traction. In order to define the stress intensity factor expression, which is given by this new model, analytical analysis and finite element simulations must be performed in addition to the experimental part, which is based on the microfabrication techniques. Silicon nitride, silicon oxide and metallic glass thin films will be studied during this work. The major goal of this model is to extract fracture toughness of 2D materials like graphene.



Electromechanical properties of thin films
Researcher: Farzaneh Bahrami
Supervisor(s): Thomas Pardoen

The production of Graphene/h-BN heterostructures and the investiong of their microelectromechanical properties, the production of origami and kirigami stacks of Graphene and h-BN, the raman spectroscopy, SEM, TEM AFM and nanoindentation will be used