Ongoing research projects

IMMC

Ongoing research projects in iMMC (January 2022)


This a short description of research projects which are presently under progress in iMMC.
Hereunder, you may select one research direction or choose to apply another filter:

Biomedical engineering

Computational science

Civil and environmental engineering

Dynamical and electromechanical systems

Energy

Fluid mechanics

Processing and characterisation of materials

Chemical engineering

Solid mechanics


Research direction:
Listed keyword:
Other keyword:
Division:
Supervisor:

List of projects related to: Energy




Conducted disturbances in the frequency range 2-150 kHz
Researcher: Caroline Leroi
Supervisor(s): Emmanuel De Jaeger

During last decades, the power grid has changed significantly. The main among various causes of this change is the increasing number of devices using power electronics. These devices include switches with frequency commutation located between 2kHz and 150kHz. Besides the Power Line Carrier (PLC) which is a means of communication using the existing power network works also in this frequency range. Therefore, there is a coexistence of intentional and unintentional emissions in this frequency band while the standardization which is supposed to regulate the emission of the disturbances and the immunity of sensitive devices is currently almost non-existent for this frequency band.
In this context, the aim of this PhD thesis is to contribute to a better understanding of the origin, the propagation and the impact of the disturbances in the frequency range 2-150 kHz. It is important to gather knowledge in order to set appropriate limits in the standards.
Several observations have already been made through measurements in the litterature. However, there is a lack of theoretical explanation. In this thesis, models of disturbances sources are developed as well as models of grid components. These models will allow us to study the propagation and to understand which parameters influence the level of disturbances.
Models are developed in Matlab Simulink environment and more specifically with the SimPowerSystems toolbox. Results will also be validated through experiments.



Potential of wind and solar resources and macroeconomic implications of the energy transition
Researcher: Elise Dupont
Supervisor(s): Hervé Jeanmart

I am working on the link between energy availability and accessibility and economic growth. To do so, I study the concept of Energy Return on Investment (EROI), which is the ratio of the energy that is produced by an energy conversion device throughout its lifetime to all the energy inputs that were invested from the extraction of raw materials to the end-of-life treatment of the facility. It is the best indicator to assess the quality and sustainability of an energy project, without any economic distorsion. Easy access to high EROI resources allowed our modern societies to develop their economic activities. However, even taking into account the technological progress, the amount of high EROI resources is decreasing because : (i) EROI of fossil fuels is declining over time, (ii) renewable alternatives have lower EROIs than traditional fossil fuels and (iii) EROI of renewable alternatives is declining with their spatial expansion.

I am developing a methodology to estimate the dynamic function for the evolution of the EROI of different renewable energy sources (wind, solar and biomass) with the cumulated annual production, in order to be able to accurately estimate the evolution of the EROI of the future energy system.



Locoted
Researcher: Geoffrey Roy
Supervisor(s): Pascal Jacques

Geoffrey holds a Master in Mechatronic Engineering (2010) and a PhD in Engineering (2015) from the Université catholique de Louvain where he works as a senior researcher at the Institute of Mechanics, Materials and Civil Engineering (iMMC).
Within the Division of Materials and Process Engineering (IMAP), his research is focused on the development of new thermoelectric materials and systems for a range of applications going from industrial waste heat recovery to autonomous powering of smart sensors. In his research, he pays particular attention to the development of new solutions that present improved both technical and economical profiles in order to facilitate the emergence of these solutions out of the lab.
This research is followed by several companies such as: Drever International, AGC Glass Europe, Carmeuse or Engie.



Aerostream and IAWATHA (additive manufacturing), LOCOTED (thermoelectrics)
Researcher: Camille van der Rest
Supervisor(s): Pascal Jacques, Aude Simar

Camille van der Rest completed her PhD thesis on the optimisation of Heusler Fe2VAl-based thermoelectric compounds through innovative metallurgical processing in 2015. It was under the joint supervision of Prof. Pascal Jacques and Prof. Aude Simar. Her research topics now concern thermoelectric materials, additive manufacturing and friction stir processing technologies. Concerning thermoelectrics, the main objective is the development of low-cost, non-toxic, and powerful materials that could be used in large-scale industrial applications of heat recovery. In addition, she studies some fundamental aspects in order to improve the performances of such materials, i.e. ordering phenomena in off-stoichiometric Fe2VAl-based Heusler compounds. It is essential to make the link between (innovative) manufacturing processes, microstructures and the functional properties of these TE materials. Concerning additive manufacturing, the main contributions are on the characterisation and optimisation of the microstructures and the mechanical behaviour of Al parts obtained by Selective Laser Melting and the developpment of new materials for additive manufacturing. Again, the link between the process parameters and the final microstructure/properties is a key issue. Finally, Camille developed, together with Prof. Aude Simar and Prof. Pascal Jacques, a novel Friction Melt Bonding (FMB) process in order to weld aluminium alloys and steels. This process is still under development thanks to the collaboration with other researchers of IMAP.



BIODEC, STOCC
Researcher: Audrey Favache
Supervisor(s): Thomas Pardoen

obtained a PhD degree in the domain of process control in 2009 at Université catholique de Louvain (Belgium), after having graduated there as chemical engineer in 2005. Since then, she is working as a "senior" researcher on several applied research projects in collaboration with the industry in the domain of mechanics of materials. More particularly, she is interested in the link between the mechanical properties of the individual components of a complex system and the global mechanical response of this system. She applied this approach to the framework of tribology and contact mechanics for understanding the scratch resistance of coatings and multilayered systems. Her work covers both experimental aspects and finite element simulations.



Techno-economic viability of variable-speed pumped-storage hydropower based on centrifugal pumps used as turbines
Researcher: Thomas Mercier
Supervisor(s): Emmanuel De Jaeger

This research takes place in the frame of SmartWater, a 3.5-year research project funded by the Walloon region, Belgium, and whose goal is to investigate the conversion of former mines and quarries into pumped-storage hydropower (PSH) sites, taking advantage of existing cavities. The project involves several academic and industrial partners, among which Laborelec, Electrabel and Cofely, as well as sponsors, including Ores, Elia, Charmeuse and Ensival-Moret. The SmartWater project is divided in several work packages, ranging from the geological study of potential mines and quarries, to the economical and electromechanical aspects of pumped-storage hydropower.



BEST
Researcher: Véronique Dias
Supervisor(s): Hervé Jeanmart

In the BEST project, I hold the management and coordination that support all the activities to be developed during the project by providing the necessary tools, methods and governing structure.



Improvement of gas quality in small-scale biomass gasification facilities through steam injection
Researcher: Arnaud Rouanet
Supervisor(s): Hervé Jeanmart

Biomass, as a renewable fuel, can be converted in a gasifier to produce a synthetic gas that is easier to transport and has a wider range of applications than solid biomass, including bio-fuels, chemicals or energy production.
In order to improve the quality of the produced gases, we will investigate how steam can be used instead of air as the oxidizing agent, to limit the syngas dilution with inert nitrogen and increase its heating value. The project will focus on improving an existing small-scale two-stage gasification unit owned by UCL, on which ad-hoc modifications will be brought and experimental campaigns will be performed.
Theoretical calculations and literature reviews will be performed to confirm and precise the potential for improvement of syngas composition. The design and ideal location of steam injection points will be studied, and experiments will be conducted on the modified gasifier to complement the theoretical calculations. Advanced tools and methods will be used for the characterisation of the syngas composition, to increase the accuracy of the experimental results. Finally, a numerical model of the gasification process will possibly come as complement for a more accurate prediction and confirmation of the experimental results.
This research project will take place in the frame of the project ENERBIO, in collaboration with ULB, UMons and CRA-W.



Robust optimisation of the pathway towards a sustainable whole-energy system: role of synthetic fuels
Researcher: Xavier Rixhon
Supervisor(s): Francesco Contino, Hervé Jeanmart

Securing energy supply while mitigating the anthropogenic greenhouse gas emissions embodies one of the biggest challenges of today’s -and tomorrow’s- society. In this perspective, renewable energies, mainly wind and solar, will be extensively installed. However, these resources per se present a time and space disparity which generally leads to a mismatch between supply and demand. Therefore, to harvest their maximum potentials, the energy system shall become more flexible, especially through the storage of this renewable electricity. The integration of electro-fuels seems to be a promising solution. They could play the role of long-term storage of electricity and energy carriers to supply other sectors (e.g. heat or mobility). To address the question of the role of these fuels in the energy transition, a multi-energy and multi-sector model, Energy Scope TD (ESTD), will be further developed. It optimizes the design of an energy system to minimize its costs and emissions. Defining an energy transition strategy for a large-scale system, such as a country, implies decisions with long-term impacts (20 to 50 years) and, hence, many uncertainties. To perform the uncertainty quantification (UQ), ESTD will be complemented with a surrogate-assisted UQ framework. The perspective of this project is then to provide the designers and the decision-makers with optimized energy system designs, including the knowledge we have on the uncertainties, in order to pave a robust pathway towards sustainability.



NEXTAEC
Researcher: Renaud Delmelle
Supervisor(s): Joris Proost

My current research revolves around alkaline water eletrolysis, with pulsed electrical power and forced electrolyte flow. Focus is made on the development of 3D electrodes, both on laboratory scale and on pilot plant level. I am notably working on the development of 3D printed Ni electrodes.



Simulation and experimental validation of electrochemical hydrogen production via pulsed water electrolysis on 3D electrodes
Researcher: Fernando Saraiva Rocha da Silva
Supervisor(s): Joris Proost

In the context of global warming, there is an increasing effort to decarbonize energy systems. With renewable sources such as windmills and solar panels increasing their share in the electric grid, energy storage is a must, since these sources are intrinsically intermittent. Among all the storage solutions, hydrogen production from water electrolysis has proven to be the best one for long-periods and high energy quantities. The principle is that the electricity is used to produce hydrogen and oxygen gases in electrolyzers and when needed, the produced hydrogen can be burned or used on fuel cells to recover electric energy. The main goal of the thesis is to intensify electrolytic hydrogen production by different methods, such as the use of 3-D electrodes, forced electrolytic flow, and pulsed power. Some questions are addressed such as: will the 3-D electrodes increase the performance in comparison with the conventional 2-D electrodes? Can the forced electrolytic flow remove all the gas bubbles trapped in the 3-D structure? To how extent a pulsed power can help the gas bubble removal and improve the performance? What is the best 3-D structure to intensify hydrogen production? To answer these questions, several approaches are proposed. They include electrochemical measurements like cyclic voltammetry, pulsed voltage and pulsed current experiments, and galvanostatic experiments. Additionally, hydrogen gas will be collected to estimate the production rate. All these experiments will be performed with varying 3-D structure, electrolyte temperature, and concentration. Some of the tested electrodes will be designed and produced at UCLouvain. Computational fluid dynamic simulation is also proposed as a way to better understand the electrolytic cell. As a first result, it was seen that current pulses presented a better result than voltage pulses. Furthermore, pulsed power could increase the hydrogen production rate during the time the voltage was on. Nevertheless, when considering the average production rate, including the period the voltage was off, pulsed power had the worst performance. It was observed that pulse frequency was inversely proportional to performance and that decreasing duty cycle could increase efficiency. Furthermore, it was observed that forced electrolytic flow was capable of enhancing the process performance, especially for electrodes with a high surface density (m2/m3).



FLEXibilize combined cycle power plant through Power-to-X solutions using non-CONventional FUels (FLEXnCONFU)
Researcher: Azd Zayoud
Supervisor(s): Francesco Contino, Hervé Jeanmart

FLEXnCONFU project aims to demonstrate the flexibility of combined cycle power plants, using hydrogen, or an ammonia carrier, as an energy storage elements.

A comprehensive model will be developed to evaluate the contribution of imported synthetic/electro fuels and their usages and the non-energy use of energy vectors. The model will be used in different scenarios considering two objectives: the minimization of the economic cost (LCOE) and the minimization of the Global Warming Potential (GWP). However, when taking the parameters to optimize as perfectly known, the real objective could even be really far, leading to a fragile optimum, and therefore insecurity of supply. Instead of deterministic optimization, this task will include uncertainty quantification analysis in order to perform robust optimization instead. Considering the uncertainties, it will provide much richer information to policy maker or system designers.



Carnot batteries as effective sector-coupling systems for heat and power: techno-economic analysis and robust optimisation
Researcher: Antoine Laterre
Supervisor(s): Francesco Contino

The first concepts of Carnot batteries appeared in the early 2010s. These systems propose to use excess energy from the grid to produce heat and store it in thermal form. This energy can then be returned in the form of electricity through thermal cycles. By their very nature, these “batteries” allow for efficient coupling between electrical and thermal systems, which is an asset regarding the challenges prescribed by the energy transition. For example, they can take advantage of waste heat (< 100°C) to increase their power output to power input ratio to values above 100%. The heat they generate can also be used for other purposes (e.g. industrial).


Theoretical studies to date have shown that this technology has great potential for development. However, they also reveal that the performance can deteriorate severely when certain parameters deviate slightly from the optimal design conditions (i.e. variation of waste heat temperature, of isentropic efficiencies, etc.). In order to evaluate their real potential, this project proposes to integrate, by simulation means, the uncertainty dimension on these parameters to quantify more efficiently the sensitivity of Carnot batteries to them.


To identify the designs that are robust to uncertainty and to evaluate the actual techno-economic performance of these systems, Uncertainty Quantification and Robust Optimisation (optimisation under uncertainty) techniques will be applied. Using metrics such as LCOS, we will assess with more certainty the potential of this technology compared to other storage systems, such as batteries.





Development and charactrisation of a Fe2VAl-based transverse thermoelectric module built by additive manufacturing
Researcher: Mathieu Delcroix
Supervisor(s): Pascal Jacques

The aim of my thesis is to study and optimise an innovative alternative to classical thermoelectric generators according to different aspects : geometry, materials and manufacturing processes. More specifically, it consists in implementing and optimising a Fe2VAl-based transverse thermoelectric generator with an optimize internal topology built by multimaterial additive manufacturing. The main scientific issues that will dictate the experimental approaches and the modelling steps consist in : (i) understanding the transverse thermoelectric effect and its experimental study coupled with a topological optimisation (since existing studies are mainly theoretical only); (ii) the analyse of the microstructural characteristics resulting from the additive manufacturing on the electrical and thermal properties of the Fe2VAl compound (what has not been done so far), but also of the other compounds that are needed in case of multimaterial additive manufacturing; (iii) optimising the characteristics of a functional transverse thermoelectrical generator in function of the operating conditions.