- UCL Home
- Research institutes
- Institute of Mechanics, Materials and Civil Engineering
- Research
- Ongoing research projects
Ongoing research projects
IMMC
Ongoing research projects in iMMC (March 2023)
This a short description of research projects which are presently under progress in iMMC.
Hereunder, you may select one research direction or choose to apply another filter:
List of projects related to: Solid mechanics
![]() | DeltaT Researcher: Valentin Marchal-Marchant Supervisor(s): Pascal Jacques obtained his degree in engineering in materials science from the Université catholique de Louvain in 2011. Then, he accomplished his PhD under the supervision of prof. Pascal Jacques, on the study of Physical Vapor Deposition of thick copper films on steel. His research is now focused on the development of thermoelectric materials and thermoelectric generators for energy harvesting and passive electromechanical systems. It aims at using common and non-toxic materials to generate electrical power from thermal gradients. Nowadays, attention is put on large scale applications owing to more than 7 years of research about thermoelectric materials leaded in IMAP. The big challenge of this topic is the development of new tools and equipments for material production and assembly, and specific characterization methods. Such a wide range of different tasks can only be achieved thanks to the versatility of technical and scientific expertises of the IMAP team members as well as Lacami support. |
![]() | LongLifeAM & MultiMat3D (additive manufacturing) Researcher: Camille van der Rest Supervisor(s): Pascal Jacques, Aude Simar Camille van der Rest completed her PhD thesis on the optimisation of Heusler Fe2VAl-based thermoelectric compounds through innovative metallurgical processing in 2015. It was under the joint supervision of Prof. Pascal Jacques and Prof. Aude Simar. Her research topics now concern additive manufacturing, friction stir processing and thermoelectric materials. Concerning additive manufacturing, the main contributions are on the characterisation and optimisation of the microstructures and the mechanical behaviour of Al parts obtained by Laser Powder Bed Fusion and the developpment of new materials for additive manufacturing. The link between the process parameters and the final microstructure/properties is a key issue. The optimisation of the post-treatments, both thermal treatments and Friction Stir Processing (FSP), is another of her research topics in order to reach improved mechanical properties. Finally, multi-material additive manufacturing is also studied, in order to understand the influence of both metallic alloys and their interactions (diffusion, reaction,...) on the final microstructures and properties. On another hand, Camille developed, together with Prof. Aude Simar and Prof. Pascal Jacques, a novel Friction Melt Bonding (FMB) process in order to weld aluminium alloys and steels. This process is still under development thanks to the collaboration with other researchers of IMAP. Concerning thermoelectrics, the main objective is the development of low-cost, non-toxic, and powerful materials that could be used in large-scale industrial applications of heat recovery. In addition, she studies some fundamental aspects in order to improve the performances of such materials, i.e. ordering phenomena in off-stoichiometric Fe2VAl-based Heusler compounds. It is essential to make the link between (innovative) manufacturing processes, microstructures and the functional properties of these TE materials. |
![]() | MONACO Researcher: Audrey Favache Supervisor(s): Thomas Pardoen obtained a PhD degree in the domain of process control in 2009 at Université catholique de Louvain (Belgium), after having graduated there as chemical engineer in 2005. Since then, she is working as a "senior" researcher on several applied research projects in collaboration with the industry in the domain of mechanics of materials. More particularly, she is interested in the link between the mechanical properties of the individual components of a complex system and the global mechanical response of this system. She applied this approach to the framework of tribology and contact mechanics for understanding the scratch resistance of coatings and multilayered systems. Her work covers both experimental aspects and finite element simulations. |
![]() | WAALU: wire arc additive manufacturing (WAAM) of high strength aluminium alloys Researcher: Matthieu Baudouin Lezaack Supervisor(s): Aude Simar The WAALU project aims at manufacturing structures in high strength aluminium alloys by wire arc additve manufacturing (WAAM). The WAAM application on aluminium alloys is currently limited to easy to weld alloys (Mg enriched 5xxx series). The WAALU project is investigating the feasability of deposing high strength alloys like 2xxx and 7xxx series by WAAM technique. The current challenges are the need of manufacturing aluminium wires in the targetted series and the identification of the WAAM working parameters to avoid deposition defects in the built pieces. Step by step, the project proposes a methodology for processing the high strenght alloys by WAAM, with extensive characterization of the obtained microstructures. Mechanical performances of printed parts are extracted in all configuration, in order to achieve excellence in WAAM manufacturing in Belgium. |
![]() | Modèle hybride multi- échelle pour l’ étude rh éologique des solutions de macromolécules Researcher: Nathan Coppin Supervisor(s): Vincent Legat graduated in physical engineering at Université Catholique de Louvain in 2018 and is currently pursuing a PhD under the supervision of Prof. Vincent Legat. The goal of his thesis is to study the performance of the MigFlow Software using applications that require the management of frictional contacts. |
![]() | Improving the properties of glass fiber reinforced acrylic thermoplastic resin based composites Researcher: Sarah Gayot Supervisor(s): Thomas Pardoen For the manufacturing of continuous fiber reinforced thermoplastic composites (CFRTP), certain monomers can be infused through glass fabric and then polymerized in situ, in order to make a thermoplastic composite part. However, defects - e.g. porosity - can occur in the material, due to the thickness of the laminates and the shrinkage of the resin matrix during polymerization. Such phenomena must be understood, as well as their effects on the mechanical properties of the final composite part. The originality of this work lies in the very nature of the polymeric matrix used for manufacturing the composite parts, which is thermoplastic instead of thermoset. Little is known about the behaviour of such thermoplastic composites, especially at a microscopic scale. During this PhD, we will try to understand how defects occurring in the material can influence the structural properties of the CFRTP, and we will try to mitigate (or at least control) the incidence of such defects. This will imply a better knowledge of how usual characterisation techniques can be applied from thin to thick composite parts. In particular, digital simulation will be used so as to predict the properties of thick composite parts from those of thinner samples. |
![]() | AI-based control policies towards efficient collective behaviours of flow agents and their application to fish schooling Researcher: Denis Dumoulin Supervisor(s): Philippe Chatelain The principal objective is to shed light on mechanisms allowing anguiliform swimmers to swim very efficiently either on their own or in group. Simulations rely on an unsteady panel method with vortex shedding and on reinforcement learning. |
![]() | Development of thermo-tensile nano devices operating ex situ or in situ in transmission electron microscopes (TEM) Researcher: Alex Pip Supervisor(s): Hosni Idrissi The main goal of my research project is to develop modern miniaturized devices dedicated to quantitative small-scale thermo-tensile testing in-situ inside a transmission electron microscope. These unique devices will be used to investigate the effect of T on the plasticity/failure mechanisms in selected materials, nanocrystalline palladium films and olivine. My project builds up on already existing MEMS devices, namely the commercial Push-to- Pull from Bruker.Inc and UCLouvain’s ‘lab-on-chip’ nano tensile testing devices. Currently, those devices are limited to room temperature experiments. My work will be dedicated to the integration of heating systems inside these two devices, in order to heat samples up to hundreds of °C. This will allow performing in-situ TEM thermo-tensile tests on Pd films and olivine samples where the coupling between tensile loading and heating could lead to unprecedented results regarding the effect of T on the mechanical response and the plasticity/failure mechanisms. This project has a direct application in the field of geology, as one of the selected material is olivine, the material that makes up most of the upper part of the Earth’s mantle. Thermo-tensile testing of olivine at the micro/nano scale will bring crucial data about its rheology under conditions similar to the Earth’s mantle. This part of the project involving olivine will be performed in close contact with prof. Patrick Cordier and his team at UMET (Université de Lille). The other selected material is Pd, a material that is well known by the UCLouvain’s IMMC researchers used here as a benchmark. I will mostly work within the WINFAB platform, where I will develop and build the new thermo-tensile devices using the nanofabrication equipment. As theses devices are expected to be used in-situ inside a TEM, I will also partly work at the EMAT research center (UAntwerpen). |