Yves Dufrêne


Postal Address :
Croix du Sud, 4-5
Bte L7.07.06
1348 Louvain-la-Neuve

E-mail : Yves Dufrêne

Tel. +32 10 47 36 00
Secretariat +32 10 47 35 88

Location :
Carnoy Bldg (SC12)
Floor 04, room C455
Campus Louvain-la-Neuve



Postdoc positions are available !






Microbiology at the nanoscale

Our goal is to push the limits of force nanoscopy beyond state-of-the-art to establish this nanotechnology as an innovative platform in biofilm research. By developing new tools, we wish to understand how pathogens use their surface molecules to guide cell adhesion and trigger infections, and to develop anti-adhesion strategies for treating biofilm-infections.

"Knowledge is limited. Imagination encircles the world.” ― A. Einstein


December 5, 2017.

Physical stress activates the adhesive function of Staphylococcus aureus surface protein clumping factor B

Staphylococcus aureus colonizes the skin and the nose of humans and can cause various disorders, including superficial skin lesions and invasive infections. During nasal colonization, the S. aureus surface protein clumping factor B (ClfB) binds to the squamous epithelial cell envelope protein loricrin, but the molecular interactions involved are poorly understood. In a new paper published in mBio, we unravel the molecular mechanism guiding the ClfB-loricrin interaction. We show that the ClfB-loricrin bond is remarkably strong, consistent with a high affinity "dock, lock and latch" binding mechanism. We discover that the ClfB-loricrin interaction is enhanced under tensile loading, thus providing evidence that the function of a S. aureus surface protein can be activated by physical stress.

More news