Mathematical Optimization

Working Papers

1. Rodomanov, Anton; Nesterov, Yurii. Greedy-quasi Newton methods with explicit superlinear convergence (xxx), 2020. 27 p.

2. Nesterov, Yurii. Superfast second-order methods for unconstrained convex optimization (xxx), 2020. 17 p.

3. Rodomanov, Anton; Nesterov, Yurii. Rates of superlinear convergence for classical quasi-Newton methods (xxx), 2020. 24 p.

4. Rodomanov, Anton; Nesterov, Yurii. New results on superlinear convergence of classical quasi-Newton methods (xxx), 2020. 24 p.

5. Nesterov, Yurii. Inexact accelerated high-order proximal-point methods (xxx), 2020. 21 p.

6. Nesterov, Yurii. Inexact high-order proximal-point methods with auxiliary search procedure (xxx), 2020. 23 p.

7. Doikov, Nikita; Nesterov, Yurii. Convex optimization based on global lower second-order models (xxx), 2020. 22 p.

8. Nesterov, Yurii. Online analysis of epidemics with variable infection rate (xxx), 2020. 24 p.

9. Nesterov, Yurii. Online prediction of COVID19 dynamics. Belgian case study (xxx), 2020. 28 p.

10. Nunes Grapiglia, Geovani; Nesterov, Yurii. Tensor methods for finding approximate stationary points of convex functions (xxx), 2019. 31 p.

11. Nunes Grapiglia, Geovani; Nesterov, Yurii. On inexact solution of auxiliary problems in tensor methods for convex optimization (xxx), 2019. 26 p.

12. Doikov, Nikita; Nesterov, Yurii. Contracting proximal methods for smooth convex optimization (xxx), 2019. 24 p.

13. Weninger, Dieter; Wolsey, Laurence. Benders'algorithm with (mixed)-integer subproblems (xxx), 2019. 24 p.

14. Florea, Mihai. Exact gradient methods with memory (xxx), 2019. 23 p.

15. Nunes Grapiglia, Geovani; Nesterov, Yurii. Tensor methods for minimizing convex functions with Hölder continuous higher-order derivatives (xxx), 2019. 32 p.

16. Nesterov, Yurii; Florea, Mihai. Gradient methods with memory (xxx), 2019. 17 p.

17. Nesterov, Yurii. Inexact basic tensor methods (xxx), 2019. 28 p.

18. Doikov, Nikita; Nesterov, Yurii. Local convergence of tensor methods (xxx), 2019. 19 p.