Enseignants
Langue
d'enseignement
d'enseignement
Thèmes abordés
- Rappel des différents types d'EDP ainsi que leur classification. Méthodes des caractéristiques en écoulements compressibles simples.
- Différences finies centrées, explicites et implicites. Différences finies décentrées. Analyse modale et nombre d'onde modifié pour la discrétisation d'une équation de convection et/ou de diffusion : erreurs de phase et/ou d'amplitude
- Schémas d'intégration temporelle, explicites et implicites : rappels, nouveaux schémas, analyse de stabilité.
- Equations de convection et/ou diffusion : cas multi-dimensionnels, cas linéaires et non-linéaires, schémas d'intégration explicites et implicites (méthodes ADI).
- Méthodes numériques pour écoulements incompressibles, stationnaires et instationnaires : en formulation vitesse-pression et en formulation tourbillon-vitesse (aussi introduction à la méthode des particules de tourbillon).
- Méthodes numériques pour systèmes hyperboliques : équation de Burgers, équations d'Euler pour écoulements compressibles ; intégration temporelle ; capture des discontinuités. Transformation d'un domaine de calcul (bloc) en un domaine physique, et équations dans le domaine de calcul, approche multi-blocs. Forme « Delta » et schémas ADI généralisés.
- Introduction à la méthode des volumes finis pour maillages non-structurés.
Acquis
d'apprentissage
d'apprentissage
A la fin de cette unité d’enseignement, l’étudiant est capable de : | |
1 |
Eu égard au référentiel AA du programme « Master ingénieur civil mécaniciens », ce cours contribue au développement, à l'acquisition et à l'évaluation des acquis d'apprentissage suivants :
|
Contenu
voir la version en Anglais
Méthodes d'enseignement
voir la version en anglais
Modes d'évaluation
des acquis des étudiants
des acquis des étudiants
voir la version an anglais
Ressources
en ligne
en ligne
site Moodle du cours
Bibliographie
- R.W. Hamming, « Numerical Methods for Scientists and Engineers », second ed., Dover, 1986.
- J.H. Ferziger, « Numerical Methods for Engineering Applications », Wiley, 1981.
- J. H. Ferziger and M. Peric, « Computational Methods for Fluid Dynamics », Springer, 1996.
- R. Peyret and T.D. Taylor, « Computational Methods for Fluid Flow », Springer, 1986.
- C.A. J. Fletcher, « Computational Techniques for Fluid Dynamics 1, Fundamental and General Techniques », second ed., Springer 1991.
- C.A. J. Fletcher, « Computational Techniques for Fluid Dynamics 2, Specific Techniques for Different Flow Categories » second ed., Springer, 1991.
- K. Srinivas and C.A.J Fletcher, « Computational Techniques for Fluid Dynamics, A Solutions Manual », Springer, 1991.
- D.A. Anderson, J.C. Tannehill, R.H. Pletcher, « Computational Fluid Mechanics and Heat Transfer », Hemisphere Publishing, 1984.
- D. Drikakis and W. Rider, « High-Resolution Methods for Incompressible and Low-Speed Flows », Springer, 2005.
Support de cours
- Notes et documentation (e;g. slides) du titulaire
Faculté ou entité
en charge
en charge
Programmes / formations proposant cette unité d'enseignement (UE)
Intitulé du programme
Sigle
Crédits
Prérequis
Acquis
d'apprentissage
d'apprentissage
Master [120] : ingénieur civil biomédical
Master [120] : ingénieur civil mécanicien
Master [120] : ingénieur civil électromécanicien
Master [120] : ingénieur civil en mathématiques appliquées
Master [120] : ingénieur civil en génie de l'énergie