5.00 crédits
30.0 h + 30.0 h
Q1
Enseignants
Langue
d'enseignement
d'enseignement
Français
Préalables
Ce cours suppose acquises les notions de base de l'analyse telles qu'enseignées dans le cours LEPL1102.
Thèmes abordés
Le cours présente les concepts fondamentaux des mathématiques discrètes (dénombrement, et théorie des graphes) ainsi que des probabilités nécessaires aux disciplines de l'ingénieur (variables aléatoires, probabilité conditionnelles, dépendance entre variables aléatoires, estimation et théorèmes limites).
Acquis
d'apprentissage
d'apprentissage
A la fin de cette unité d’enseignement, l’étudiant est capable de : | |
A l'issue de ce cours, l'étudiant sera à même de :
|
|
Contenu
Mathématiques discrètes:
o Combinatoire et dénombrement
o Lien entre le dénombrement et les injections, surjections et bijections
o Eléments de théorie des graphes
o Eléments d'arithmétique modulaire (y compris introduction à la cryptographie ou
aux codes correcteurs d'erreur)
Probabilités
o Introduction à la modélisation des données statistiques et aux concepts de probabilités dans des contextes d'ingénierie
o Evénements et probabilités, en lien notamment avec la combinatoire
o Variables aléatoires: discrètes et continues (univariées), y compris pdf et cdf
o Exemples de variables aléatoires : Binomiale, Poisson, Gaussienne, exponentielle
o Variables aléatoires bivariées (discrètes et continues)
o Distributions conjointes, distributions marginales et conditionnelles, indépendance
o Etude des caractéristiques des distributions uni- et bivariées via des simulations sur
ordinateur
o Moyenne, variance, covariance et corrélation, espérance et variance conditionnelle
o Introduction à l'estimation de ces quantités caractéristiques
o Loi des grands nombres et théorème central limite
o Combinatoire et dénombrement
o Lien entre le dénombrement et les injections, surjections et bijections
o Eléments de théorie des graphes
o Eléments d'arithmétique modulaire (y compris introduction à la cryptographie ou
aux codes correcteurs d'erreur)
Probabilités
o Introduction à la modélisation des données statistiques et aux concepts de probabilités dans des contextes d'ingénierie
o Evénements et probabilités, en lien notamment avec la combinatoire
o Variables aléatoires: discrètes et continues (univariées), y compris pdf et cdf
o Exemples de variables aléatoires : Binomiale, Poisson, Gaussienne, exponentielle
o Variables aléatoires bivariées (discrètes et continues)
o Distributions conjointes, distributions marginales et conditionnelles, indépendance
o Etude des caractéristiques des distributions uni- et bivariées via des simulations sur
ordinateur
o Moyenne, variance, covariance et corrélation, espérance et variance conditionnelle
o Introduction à l'estimation de ces quantités caractéristiques
o Loi des grands nombres et théorème central limite
Méthodes d'enseignement
Le cours sera constitué :
- d'exposés ex cathedra qui présenteront les concepts et outils sur base d'exemples issus du monde de l'ingénieur ;
- de séances d'exercices (APE) visant à mettre systématiquement en pratique les différentes notions structurées durant le cours.
- d'études de cas (APP) qui donneront l'occasion à l'étudiant de découvrir certaines notions par l'intermédiaire de problèmes.
Des devoirs et mini-projets pourront aussi être proposés et n'interviendront pas dans la note finale du cours.
Des exemples d'applications relatives aux thématiques du développement durable et de la transition seront évoqués.
- d'exposés ex cathedra qui présenteront les concepts et outils sur base d'exemples issus du monde de l'ingénieur ;
- de séances d'exercices (APE) visant à mettre systématiquement en pratique les différentes notions structurées durant le cours.
- d'études de cas (APP) qui donneront l'occasion à l'étudiant de découvrir certaines notions par l'intermédiaire de problèmes.
Des devoirs et mini-projets pourront aussi être proposés et n'interviendront pas dans la note finale du cours.
Des exemples d'applications relatives aux thématiques du développement durable et de la transition seront évoqués.
Modes d'évaluation
des acquis des étudiants
des acquis des étudiants
Examen écrit individuel en session et/ou oral selon les circonstances (situation individuelle particulière, besoin de clarification, etc.).
Ressources
en ligne
en ligne
La page Moodle du cours.
Support de cours
- Documents sur la page Moodle / Documents on the Moodle page
Faculté ou entité
en charge
en charge