Inference and Data Reduction

lstat2440  2024-2025  Louvain-la-Neuve

Inference and Data Reduction
4.00 crédits
15.0 h + 7.5 h
Q1
Enseignants
Langue
d'enseignement
Anglais
Préalables
Concepts et outils équivalents à ceux enseignés dans les UEs
LSTAT2190Concepts et traitement de vecteurs aléatoires
LSTAT2040Inférence statistique et vraisemblance
Thèmes abordés
Il s'agit d'un approfondissement et d'un enrichissement des concepts de base en statistique méthodologique (notamment l’inference optimale) comme vus dans le cours LSTAT2040  par des concepts approfondis.
Acquis
d'apprentissage

A la fin de cette unité d’enseignement, l’étudiant est capable de :

1 A. Eu égard au référentiel AA du programme de master en statistique, orientation générale, cette activité contribue au développement et à l'acquisition des AA suivants, de manière prioritaire : 1.4, 1.5, 2.3, 4.3, 4.4.

Eu égard au référentiel AA du programme de master en statistique, orientation biostatistique, cette activité contribue au développement et à l'acquisition des AA suivants, de manière prioritaire : 1.4, 1.5, 2.3
B. Au terme du cours, l'étudiant maîtrisera les concepts de la statistique mathématique qui sont complémentaires à la théorie (asymptotique)  de maximum de vraisemblance. Le concept de l’exhaustivité a récemment aussi gagné de l’importance pour la reduction de dimension en statistique de haute dimension. L’étudiant sera capable de mettre dans un contexte abstrait général les différents thèmes abordés tant qu'à leur application aux problèmes courants de l'analyse statistique tant qu'à leur interprétation. Il maîtrisera les outils techniques nécessaires pour une application correcte des concepts vus, et il sera capable de reproduire et transférer les arguments de dérivation des résultats techniques et mathématiques.
 
Contenu
Theory of Optimality for Statistical Inference
The concept of sufficiency, in particular when applied to the important and rich class of exponential families, delivers a non-asymptotic theory of optimality of statistical procedures. The applications are numerous: for risk-optimal point estimation one can define the concept of UMV(U) estimators, i.e. "uniformly minimal variance (unbiased)" estimators. For the theory of statistical hypothesis testing, to be more abstractly formalised following the Neyman principle, it is possible to characterise the optimality of existing tests via the concept of UMP(U) tests, i.e., "uniformly most powerful (unbiased)" tests. A particular challenge here is the treatment of multi parameter families. Finally, the results from test theory can be directly transferred to define optimality of confidence regions.
Méthodes d'enseignement
Le cours comprend des exposés magistraux et des séances d'exercices. La langue de l'enseignement est l'anglais.
The lecture part of the course will often be taught by the concept of "classe inversée", i.e. students read the course material (detailed syllabus) in advance, meet the teacher to prepare a presentation and present the material in front of their peers.
Modes d'évaluation
des acquis des étudiants
L'évaluation comprend une interrogation orale avec préparation par écrit d'un solutionnaire préalable. Alternativement, l'étudiant sera évalué sur sa participation a la classe "inversée", notamment sur sa présentation.
Autres infos
Les notes de cours sont distribuées lors de la première séance du cours. Il existe aussi un syllabus détaillé.
Ressources
en ligne
https://moodle.uclouvain.be/course/view.php?id=4279
Bibliographie
A part du syllabus du cours, les ouvrages suivants sont à conseiller:
-     Casella, G., Berger, R.L. (2001). Statistical Inference (2nd ed). Cengage Learning.
- Lehmann, E.L. (1999). Elements of Large-Sample Theory. Springer.
-      Lehmann, E.L., Romano, J. (2005). Testing Statistical Hypotheses (3rd ed). Springer.
-          Monfort, A. (1997). Cours de statistique mathématique (3rd ed). Economica.
Support de cours
  • syllabus sur moodle
  • copies des slides résumant la matière
Faculté ou entité
en charge


Programmes / formations proposant cette unité d'enseignement (UE)

Intitulé du programme
Sigle
Crédits
Prérequis
Acquis
d'apprentissage
Master [120] en sciences mathématiques

Master [120] en statistique, orientation générale

Certificat d'université : Statistique et science des données (15/30 crédits)