Eric Deleersnijder
Recent publications

has a degree in electrical and mechanical engineering, and a doctorate in applied sciences (mechanics). His research interests focus on the development and use of unstructured-mesh models for simulating geophysical and environmental fluid flows, as well as the related ecological processes. His domains of interest comprise most of the hydrosphere, i.e. lakes, rivers, estuaries, coastal regions, shelf seas and the World Ocean.
He is coordinating the SLIM project (Second-generation Louvain-la-Neuve Ice-ocean Model, and he is the co-founder of the Constituent-oriented Age and Residence time Theory (CART,
He has held research or teaching positions in Belgium and abroad. He currently is a reader at the Université catholique de Louvain (Louvain-la-Neuve, Belgium), where he is lecturing on several aspects of mechanics. He is also an honorary researcher with the Belgian Fund for Scientific Research (FRS-FNRS, On October 1st, 2014, he accepted a five-year, part-time professorship in applied mathematics at the Delft University of Technology (Delft, The Netherlands,
Additional pieces of information may be found on his website (

IMMC main research direction(s):
Civil and environmental engineering
Fluid mechanics

geophysical and environmental fluid dynamics
diagnostic timescales for reactive transport

Research group(s): MEMA


PhD and Post-doc researchers under my supervision:

Modelling and diagnosing transport processes in a tropical river-lake-delta-sea continuum Application to the Mahakam River (Borneo Island, Indonesia)
Insaf Draoui

The project aims to model and diagnose transport processes in the Mahakam delta using a coupled 1D-2D model. The model will be based on SLIM. Advanced diagnostic methods will be inspired by CART and pertain to both water and sediment. In addition, an attempt will be made to apply the newly-introduced concept of partial age to sediment.

Development of the 3D model of SLIM
Ange Ishimwe

SLIM is a simulation software which resolves the hydrodynamical equation with the use of finite elemnts. My goal is to developpe and improve the 3D model of SLIM. The two criteria are the precision of the results and the computation speed.

Recent publications

See complete list of publications

Journal Articles

1. Yang, Yun; Guan, Weibing; Deleersnijder, Eric; He, Zhiguo. Hydrodynamic and sediment transport modelling in the Pearl River Estuary and adjacent Chinese coastal zone during Typhoon Mangkhut. In: Continental Shelf Research, Vol. 233, p. 104645 (2022). doi:10.1016/j.csr.2022.104645.

2. Reijnders, Daan; Deleersnijder, Eric; Sebille, Erik. Simulating Lagrangian Subgrid‐Scale Dispersion on Neutral Surfaces in the Ocean. In: Journal of Advances in Modeling Earth Systems, Vol. 14, no.2, p. (2022). doi:10.1029/2021ms002850.

3. Figueiredo, Joana; Thomas, Christopher J.; Deleersnijder, Eric; Lambrechts, Jonathan; Baird, Andrew H.; Connolly, Sean R.; Hanert, Emmanuel. Global warming decreases connectivity among coral populations. In: Nature Climate Change, Vol. 12, p. 83-87 (2021). doi:10.1038/s41558-021-01248-7.

4. Lucas, Lisa; Deleersnijder, Eric. Diagnostic timescales: old concepts, new methods and the ageless power of simplification. In: CERF's Up!, Vol. 47, no. 1, p. 14-15 (2021).

5. Vallaeys, Valentin; Lambrechts, Jonathan; Delandmeter, Philippe; Pätsch, Johannes; Spitzy, Alejandro; Hanert, Emmanuel; Deleersnijder, Eric. Understanding the circulation in the deep, micro-tidal and strongly stratified Congo River estuary. In: Ocean Modelling, Vol. 167, p. 101890 (2021). doi:10.1016/j.ocemod.2021.101890.

6. Lucas, Lisa V.; Deleersnijder, Eric. Tracers and Timescales: Tools for Distilling and Simplifying Complex Fluid Mechanical Problems. In: Water, Vol. 13, no.19, p. 2796 (2021). doi:10.3390/w13192796.

7. Dewals, Benjamin; Archambeau, Pierre; Bruwier, Martin; Erpicum, Sebastien; Pirotton, Michel; Adam, Tom; Delhez, Eric; Deleersnijder, Eric. Age of Water Particles as a Diagnosis of Steady-State Flows in Shallow Rectangular Reservoirs. In: Water, Vol. 12, no.10, p. 2819 (2020). doi:10.3390/w12102819.

8. Deleersnijder, Eric; Draoui, Insaf; Lambrechts, Jonathan; Legat, Vincent; Mouchet Anne. Consistent boundary conditions for age calculations. In: Water, Vol. 12, p. 1274 (2020). doi:10.3390/w12051274.

9. Lucas, Lisa V.; Deleersnijder, Eric. Timescale Methods for Simplifying, Understanding and Modeling Biophysical and Water Quality Processes in Coastal Aquatic Ecosystems: A Review. In: Water, Vol. 12, no.10, p. 2717 (2020). doi:10.3390/w12102717.

10. Le, Hoang-Anh; Gratiot, Nicolas; Santini, William; Ribolzi, Olivier; Tran, Duc; Meriaux, Xavier; Deleersnijder, Eric; Soares Frazao, Sandra. Suspended sediment properties in the Lower Mekong River, from fluvial to estuarine environments. In: Estuarine, Coastal and Shelf Science, Vol. 233, p. 106522 (2019). doi:10.1016/j.ecss.2019.106522.

Conference Papers

1. Reijnders, Daan; Deleersnijder, Eric; van Sebille, Erik. Lagrangian ocean ventilation: improved subdgrid-scale dispersion on neutral surface. 2022 xxx.

2. Draoui, Insaf; Lambrechts, Jonathan; Legat, Vincent; Deleersnijder, Eric. The discontinuous Galerkin method for coupling a 1D river model to a 2D shallow water one. 2022 xxx. doi:10.5194/egusphere-egu22-1084.

3. Ishimwe, Ange Pacifique; Lambrechts, Jonathan; Legat, Vincent; Deleersnijder, Eric. A split-explicit Runge-Kutta method for 3D hydrodynamic equations for coastal applications. 2022 xxx. doi:10.5194/egusphere-egu22-2452.

4. Lucas, Lisa V.; Shen, Jian; Deleersnijder, Eric. Timescale methods for assessing biophysical interactions in aquatic ecosystems -- an attempt at bringing order to the chaos. 2021 xxx.

5. Draoui, Insaf; Lambrechts, Jonathan; Legat, Vincent; Soares Frazao, Sandra; Hoitink Ton; Deleersnijder, Eric. Discontinuous Galerkin method for 1D shallow water models. 2021 xxx.

6. Le, Hoang Anh; Lambrechts, Jonathan; Deleersnijder, Eric; Soares Frazao, Sandra; Gratiot, Nicolas; Ortleb, Sigrun. Numerical modelling of flow dynamics in the Tonle Sap by means of a discontinuous Galerkin finite-element model. In: River Flow 2020, Taylor & Francis Group: London, 2020, 978-0-367-62773-7, p. 1-7 xxx.

7. Draoui, Insaf; Lambrechts, Jonathan; Legat, Vincent; Soares Frazao, Sandra; Hoitink, Ton (A.J.F.); Deleersnijder, Eric. Discontinuous Galerkin method for 1D river flows. In: River Flow 2020, Taylor & Francis Group: London, 2020, 978-0-367-62773-7, p. 1-8 xxx.

8. Vallaeys, Valentin; Pätsch, Johannes; Delandmeter, Philippe; Hanert, Emmanuel; Spitzy, Alejandro; Deleersnijder, Eric. Carbon and oxygen budget in the deep, strongly stratified Congo River Estuary. 2020 xxx.

9. Kaestner Karl; Hoitink Ton; Torfs Paul; Deleersnijder, Eric; Nining Sari Ningsih. Bed slope effects on river tides. In: Geophysical Research Abstracts. Vol. 21, p. EGU2019-14229 (2019). Copernicus GmbH: Goettingen, 2019 xxx.

10. Deleersnijder, Eric; Dobbelaere, Thomas; Draoui, Insaf; Hanert, Emmanuel; Anh Le Hoang; Ishimwe, Ange; Lambrechts, Jonathan; Legat, Vincent; Saint-Amand, Antoine; Soares Frazao, Sandra; Vallaeys, Valentin; Vincent, David. SLIM: A multi-scale model of the land-sea continuum. 2019 xxx.

Book Chapters

1. Naithani, Jaya; Plisnier, Pierre-Denis; Deleersnijder, Eric. Tanganyika Lake, modeling the eco-hydrodynamics. In: Encyclopedia of Lakes and Reservoirs: Geography, Geology, Hydrology and Paleolimnology (Encyclopedia of Earth Sciences Serie; xxx), Springer: New-York, 2012. 978-1-4020-5616-1. xxx xxx.

2. Gourgue, Olivier; Deleersnijder, Eric; Legat, Vincent; Marchal, Emmanuel; White, Laurent. Free and forced thermocline oscillations in Lake Tanganyika. In: The Factor Separation Method in the Atmosphere: Applications and Future Prospects , xxx, 2011. 978-0-521-19173-9. xxx xxx. doi:10.1017/CBO9780511921414.011.

3. Griffies, S.M.; Deleersnijder, Eric; Hanert, Emmanuel. Problems and prospects in large-scale ocean circulation models. In: OceanObs’09: Sustained Ocean Observations and Information for Society , ESA Publication WPP-306, 2009, 1-23. xxx xxx.

4. Burchard, Hans; Deleersnijder, Eric; Stoyan, Gisbert. Some numerical aspects of turbulence-closure models. In: Marine Turbulence: Theories, Observations and Models - Results of the CARTUM Project , Cambridge University Press, 2005, p. 197-206. xxx xxx.

5. Deleersnijder, Eric. Some mathematical problems in marine modelling. In: Nonlinear Partial Differential Equations and their Applications (Collège de France Seminars; xxx), Longman, 1998, p. 101-116. 978-0-5823-6926-9. xxx xxx.

6. Deleersnijder, Eric; Beckers, Jean-Marie; Campin, Jean-Michel; El Mohajir, Mohamed; Luyten, Patrick. Some Mathematical problems associated with the development and use of marine models. In: The Mathematics of Models for Climatology and Environment (NATO SAI Series; xxx), xxx, 1997, p. 39-86. 000-0-000-000. xxx xxx.

7. Deleersnijder, Eric; Beckers, J.-M.; Fichefet, Thierry. Some mathematical problems associated with the development and use of marine models. In: The Mathematics of Models for Climatology and Environment (NATO ASI Series; xxx), Springer-Verlag: Berlin, 1996, p. 39-86. xxx xxx.

Working Papers

1. Deleersnijder, Eric. Fonction de distribution globale de l'âge dans un bassin peu profond. 2021. 5 p. xxx xxx.

2. Deleersnijder, Eric. On the method for estimating the mean property experienced by a tracer pioneered by Gross et al. (2019). 2021. 30 p. xxx xxx.

3. Deleersnijder, Eric. On the (a)symmetry of the stress tensor in continuum mechanics. 2021. 6 p. xxx xxx.

4. Deleersnijder, Eric. A conjecture about age inequalities. 2020. 7 p. xxx xxx.

5. Deleersnijder, Eric; Dewals, Benjamin. Mathematical properties of the position-dependent, steady-state water age in a shallow reservoir. 2020. 18 p. xxx xxx.

6. Deleersnijder, Eric; Vincent, David. On a simplified mechanical energy budget of Titan's subsurface ocean: a fluid-structure interaction problem. 2020. 9 p. xxx xxx.

7. Deleersnijder, Eric. The uneasy collaboration of Leonhard Euler (1707-1783) and Joseph Louis de Lagrange (1736-1813) in environmental fluid mechanics. 2020. 5 p. xxx xxx.

8. Deleersnijder, Eric. Le temps caractéristique "volume/flux" n'est pas toujours pertinent.... 2020. 3 p. xxx xxx.

9. Deleersnijder, Eric. An attempt at defining a position-dependent flushing time. 2020. 14 p. xxx xxx.

10. Deleersnijder, Eric. A quick refresher on exposure and residence times in a well-mixed domain. 2020. 4 p. xxx xxx.


1. Deleersnijder, Eric; Koszalka, Inga M.; Lucas, Lisa V.. Tracer and Timescale Methods for Passive and Reactive Transport in Fluid Flows. MDPI, 2022. 978-3-0365-3521-0. 352 pages.


1. Plisnier, Pierre-Denis; Poncelet , Nadia; Cocquyt, Christine; De Boeck, Hilde; Bompangue, Didier; Naithani, Jaya; Jacobs, Jan; Piarroux, Renaud; Moore, Sandy; Giraudoux, Patrick; Batumbo, Doudou; Mushagalusa, Déo; Makasa, Lawrence; Deleersnijder, Eric; Tomazic, Igor; Cornet, Yves. Cholera outbreaks at Lake Tanganyika induced by climate change?, xxx xxx. 2015. 119 p.

2. van Ypersele de Strihou, Jean-Pascal; Fichefet, Thierry; Campin, Jean- Michel; Deleersnijder, Eric; de Montety, Anne; Goosse, Hugues. Modelling the climate and its evolution at the global and regional scales : final report for the special project from the member state Belgium, xxx xxx. 2003. 120 p.


1. Deleersnijder, Eric. Modélisation hydrodynamique tridimensionnelle de la circulation générale estivale de la région du détroit de Bering, prom. : Nihoul, Jacques ; Deville, Michel, 1992.