Mariia Arseenko
Post-doctoral researcher


Funding: FRIA
Supervisor(s): Aude Simar

Aluminum alloys are widely used in the aerospace industry because of a good combination of mechanical properties and lightness. Large iron-rich intermetallic particles contained in the aluminum alloys are their source of damage. My PhD project proposes to aim for a new paradigm very little exploited for metallic systems: damage healing. Thus, I will design, process and characterize a new healable aluminum alloys.
Friction Stir Processing (FSP) will be used to fabricate aluminum based Metal Matrix Composites (MMCs) with healing ability. Indeed, FSP leads to microstructure refinement, homogenization and porosity reduction that can significantly postpone damage. Moreover, FSP provides uniform distribution of reinforcing particles in the produced MMCs. FSP may also be used to process out-of-equilibrium microstructures.
In order to heal damage, low-melting point intermetallic compounds will be embedded in an aluminum matrix by FSP and be the source of damage rather than the iron-rich intermetallic particles. Healing will be triggered by a heat treatment causing local melting of the healing particles.

IMMC main research direction(s):
Processing and characterisation of materials

fracture mechanics
metallic alloys
welding and joining

Research group(s): IMAP

Recent publications

See complete list of publications

Journal Articles

1. Huang, Chunjie; Arseenko, Mariia; Zhao, Lv; Xie, Yingchun; Elsenberg, Andreas; Li, Wenya; Gärtner, Frank; Simar, Aude; Klassen, Thomas. Property prediction and crack growth behavior in cold sprayed Cu deposits. In: Materials & Design, Vol. 206, p. 109826 (2021). doi:10.1016/j.matdes.2021.109826.

Conference Papers

1. Arseenko, Mariia; Hannard, Florent; Ding, Lipeng; Kashiwar, Ankush; Paccou, E.; Zhao, Lv; Pyka, Grzegorz; Idrissi, Hosni; Lefebvre, William; Villanova, Julie; Maire, Eric; Gheysen, Julie; Simar, Aude. Healing Damage in Friction Stir Processed Mg2Si reinforced Al alloy. 2022 xxx.

2. Gheysen, Julie; Pyka, Grzegorz; Hannard, Florent; Arseenko, Mariia; Villanova, Julie; Tingaud, David; Hocini, Azziz; Simar, Aude. Development of a new liquid assisted healable AlMg alloy produced for Laser Powder Bed Fusion (LPBF). 2022 xxx.

3. Gheysen, Julie; Pyka, Grzegorz; Winiarski, Bartlomiej; Hannard, Florent; Arseenko, Mariia; Villanova, Julie; Brinek, Adam; Chirazi, Ali. Correlative tomography-based characterization of a newly developed liquid assisted healable Al alloy. 2022 xxx.

4. Gheysen, Julie; Pyka, Grzegorz; Hannard, Florent; Julie Villanova; Nothomb, Nicolas; David Tingaud; Azziz Hocini; Arseenko, Mariia; Simar, Aude. Characterization of the Healability of Aluminium Alloys Produced by Laser Powder Bed Fusion (L-PBF) Using X-ray Nanoholotomography at Synchrotron (ESRF). 2022 xxx.

5. Arseenko, Mariia; Ding, Lipeng; Idrissi, Hosni; Simar, Aude. Production of a healable Al-based Metal Matrix Composites by Friction Stir Processing. In: THERMEC‘2021 – Book of Abstracts, 2021, p. 58-59 (#115) xxx.

6. Simar, Aude; Hannard, Florent; Lezaack, Matthieu; Han, Sutao; Santos Macias, Juan Guillermo; Zhao, Lv; Gomes Affonseca Netto, Nelson; Arseenko, Mariia; Gheysen, Julie; Nothomb, Nicolas; Idrissi, Hosni; Ding, Lipeng; Kashiwar, Ankush; Pyka, Grzegorz. Friction stir: much more than welding!. 2021 xxx.

7. Simar, Aude; Arseenko, Mariia; Zhao, Lv; Gomes Affonseca Netto, Nelson; Ding, Lipeng; Idrissi, Hosni. Friction Stir Processed Al alloys for damage mitigation and healing. 2019 xxx.

8. Arseenko, Mariia; Ding, Lipeng; Idrissi, Hosni; Maire, Eric; Villanova, Julie; Zhao, Lv; Simar, Aude. Investigation of Healing Ability of 6XXX Series Based Al Alloy Produced by Friction Stir Processing. 2019 xxx.

9. Arseenko, Mariia; Zhao, Lv; Ding, Lipeng; Idrissi, Hosni; Eric Maire; Julie Villanova; Simar, Aude. Healable Al alloys production by Friction Stir Processing. 2019 xxx.

10. Arseenko, Mariia; Ding, Lipeng; Simar, Aude; Idrissi, Hosni. In-situ TEM observation of healing process in Al 6xxx based alloy. 2019 xxx.

Book Chapters

1. Arseenko, Mariia; Gheysen, Julie; Hannard, Florent; Nothomb, Nicolas; Simar, Aude. Self-Healing in Metal-Based Systems. In: Engineering Materials and Processes : Self-Healing Construction Materials , Springer, 2022, p. 43-78. 9783030868796. xxx xxx. doi:10.1007/978-3-030-86880-2_3.