Aubain Verle

Funding: Assistant
Supervisor(s): Paul Fisette, Bruno Dehez

Due to urban zone densification and energy rarefaction, some facets of life habits have to be revised. The mobility doesn’t derogate from this trend and is one of the major future challenges. Automotive industry is developing new solutions to cope with the increasing problem of mobility, the need for energy efficiency and customer requirements. Facing this multiplication of objectives, often conflicting, it is quite unlikely that one particular solution would satisfy all customers in all daily needs as it was with the car until now. Several new kinds of vehicles appear, each of them being able to answer a particular use. In the special case of urban and personal mobility, tilting three-wheelers seem to be a promising solution. Small and agile, they improve the traffic flow while the associated reduction of weight allows better energy efficiency.
Because of the increase – in number and quality – of the criteria imposed to tomorrow’s vehicles, the industry must propose new types of morphologies, incorporate new technologies and detect a maximum of synergies between the latter. Thus we observe a constant increasing design tasks complexity while the development times are shorter than ever. There is a real need for global design methodologies that include, from the earliest stage of the process, a multitude of components among which the dynamics takes place.
This work aims at developing a design methodology especially dedicated to road vehicles. The method has the particularity to enable to manage the trade-off between dynamic performances and mechanical feasibility. The method is being applied to a new three-wheeler under development in our laboratory. The main characteristics of this vehicle are a unipersonal seated position, a narrow track and a electric motorization.
We achieved the design of a first prototype on the basis of the optimization processes. In particular, we develop some very specific mechanical arrangements especially designed to maximize the dynamic performances of the tilting vehicle suspensions. Moreover, it is expected that a first implementation of the prototype will be built in the future to carry out some comparison between experiment and simulation.

IMMC main research direction(s):
Computational science
Dynamical and electromechanical systems
Solid mechanics

multi-body systems
vehicle dynamics

Research group(s): MEED
Collaborations: R-Tech4