CORE
Voie du Roman Pays 34/L1.03.01
1348 Louvain-la-Neuve
Daniele Catanzaro
Professeur
Daniele Catanzaro graduated summa cum laude in Computer Science Engineering at the University of Palermo, Italy, in 2003. In 2008, he was awarded a Ph.D. in Computer Science from the Université Libre de Bruxelles for his researches in discrete optimization, network design, and computational phylogenetics, conducted at the Computer Science Department, the Institute of Biology and Molecular Medicine (IBMM), and the Hospital Erasme of the same university. Before joining the Université Catholique de Louvain in 2014, Daniele Catanzaro was a Chargé de Recherches of the Belgian National Fund for Scientific Research (2009-2013), a Visiting Scholar at the Tepper School of Business and the Computational Biology Department of Carnegie Mellon University (2010-2012), and an Assistant Professor of Discrete Optimization at the Faculty of Economics and Business of the Rijksuniversiteit Groningen (2013-2014). In 2014, Daniele Catanzaro joined the Louvain School of Management, where he is currently serving as a Professor of Discrete Optimization and President of the Center for Operations Research and Econometrics (CORE).
His research interests focus on discrete optimization, search algorithms, massive parallelism, and high performance computing. Specific optimization problems he worked on include: linear, nonlinear and uncertain network design problems, (versions of) the Steiner tree problem, coloring, covering, and partitioning problems, routing problems, (generalized versions of) the traveling salesman and the quadratic assignment problems, and nonlinear inverse problems. He is also particularly interested in specific topics from the area of data compression & encryption, bioinformatics (namely, the development of predictive models for tumorigenesis, genome-wide association studies), and in the combinatorics and computational aspects of molecular evolution and phylogenetics, with special focus on distance methods and balanced minimum evolution.
His research activities have been supported by the Belgian National Fund for Scientific Research (FNRS), the Louvain Foundation, the U.S. National Institutes of Health (NIH), the Belgian American Educational Foundation (BAEF), and the European Marie Curie Fellowship Program.
Daniele Catanzaro served as an Associate Editor for Soft Computing from 2021 to 2024 and as member of the program committee for ISCO 2024. At present he is panel member for the Canadian NSERC/CRSNG (calls 2022-2025) and expert for the ERC Horizon call HORIZON-MSCA-2024-PF-01.
- Diploma
Year Label Educational Organization 2004 DEA en Sciences Appliquées Université Libre de Bruxelles 2008 Docteur en sciences Université Libre de Bruxelles
- Discrete Optimization
- Integer Programming
- Polyhedral Combinatorics
- Computational Complexity
- Phylogenetics
Dehaybe, Henri ; Catanzaro, Daniele ; Chevalier, Philippe. Deep Reinforcement Learning for Inventory Optimization with Non-Stationary Uncertain Demand. In: European Journal of Operational Research, (2024). doi:10.1016/j.ejor.2023.10.007.
Catanzaro, Daniele ; Frohn, Martin ; Gascuel, Olivier ; Pesenti, Raffaele. A Massively Parallel Branch-&-Bound Algorithm for the Balanced Minimum Evolution Problem. In: Computers & Operations Research, Vol. 158, p. 106308 (2023). doi:10.1016/j.cor.2023.106308.
Gasparin, Andrea ; Camerota Verdù, Federico Julian ; Catanzaro, Daniele ; Castelli, Lorenzo. An evolution strategy approach for the balanced minimum evolution problem. In: Bioinformatics, Vol. 39, no. 11 (2023), p. btad660 (2023). doi:10.1093/bioinformatics/btad660.
Catanzaro, Daniele ; Pesenti, Raffaele ; Ronco, Roberto. Job scheduling under Time-of-Use energy tariffs for sustainable manufacturing: a survey. In: European Journal of Operational Research, Vol. 308, no.3, p. 1091-1109 (2023). doi:10.1016/j.ejor.2023.01.029.
Catanzaro, Daniele ; Frohn, Martin ; Gascuel, Olivier ; Pesenti, Raffaele. A tutorial on the balanced minimum evolution problem. In: European Journal of Operational Research, Vol. 300, no. 1, p. 1-19 (2022). doi:10.1016/j.ejor.2021.08.004.
Catanzaro, Daniele ; Coniglio, Stefano ; Furini, Fabio. On the exact separation of cover inequalities of maximum-depth. In: Optimization Letters, Vol. 16, no. 2, p. 449-469 (2022). doi:10.1007/s11590-021-01741-0.
Catanzaro, Daniele ; Pesenti, Raffaele ; Ronco, Roberto. A new fast and accurate heuristic for the Automatic Scene Detection Problem. In: Computers & Operations Research, Vol. 136, p. 105495 (2021). doi:10.1016/j.cor.2021.105495 (Accepté/Sous presse).
Catanzaro, Daniele ; Frohn, Martin ; Pesenti, Raffaele. An information theory perspective on the balanced minimum evolution problem. In: Operations Research Letters, Vol. 48, no.3, p. 362-367 (2020). doi:10.1016/j.orl.2020.04.010.
Catanzaro, Daniele ; Pesenti, Raffaele ; Wolsey, Laurence. On the balanced minimum evolution polytope. In: Discrete Optimization, Vol. 36, p. 100570 (2020). doi:10.1016/j.disopt.2020.100570 (Accepté/Sous presse).
Luciano Porretta ; Catanzaro, Daniele ; Bjarni V. Halldórsson ; Bernard Fortz. A Branch&Price Algorithm for the Minimum Cost Clique Cover Problem in Max-Point Tolerance Graphs. In: 4OR : quarterly journal of the Belgian, French and Italian Operations Research Societies, Vol. 17, no. 1, p. 75-96 (2019). doi:10.1007/s10288-018-0377-3.
Catanzaro, Daniele ; Pesenti, Raffaele. Enumerating vertices of the balanced minimum evolution polytope. In: Computers & Operations Research, Vol. 109, p. 209-217 (2019). doi:10.1016/j.cor.2019.05.001.
Catanzaro, Daniele ; Chaplick, S. ; Felsner, S. ; Halldórsson, B.V. ; Halldórsson, M.M. ; Hixon, T. ; Stacho, J.. Max point-tolerance graphs. In: Discrete Applied Mathematics, Vol. 216, no. 1, p. 84-97 (2017). doi:10.1016/j.dam.2015.08.019.
Catanzaro, Daniele. Classifying the progression of Ductal Carcinoma from single-cell sampled data via integer linear programming: A case study. In: IEEE-ACM Transactions on Computational Biology and Bioinformatics, Vol. 13, no. 4, p. 643 (2016). doi:10.1109/TCBB.2015.2476808.
Catanzaro, Daniele ; Aringhieri, Roberto ; Di Summa, Marco ; Pesenti, Raffaele. A branch-price-and-cut algorithm for the minimum evolution problem. In: European Journal of Operational Research, Vol. 244, no. 3, p. 753-765 (2015). doi:10.1016/j.ejor.2015.02.019.
Catanzaro, Daniele ; Engelbeen, C.. An integer linear programming formulation for the minimum cardinality segmentation problem. In: Algorithms, Vol. 8, no.4, p. 999-1020 (2015). doi:10.3390/a8040999.
Catanzaro, Daniele ; Gouveia, Luis ; Labbé, Martine. Improved integer linear programming formulations for the job sequencing and tool switching problem. In: European Journal of Operational Research, Vol. 244, no.3, p. 766-777 (2015). doi:10.1016/j.ejor.2015.02.018.
Catanzaro, Daniele ; Ravi, R. ; Schwartz, R.. A mixed integer linear programming model to reconstruct phylogenies from single nucleotide polymorphism haplotypes under the maximum parsimony criterion. In: BMC Algorithms for Molecular Biology, Vol. 8, no.n.a., p. 3 (2013).
Catanzaro, Daniele ; Labbé, M. ; Halldórsson, B.V.. An integer programming formulation of the parsimonious loss of heterozygosity problem. In: IEEE-ACM Transactions on Computational Biology and Bioinformatics, Vol. 10, no.6, p. 1391-1402 (2013). doi:10.1109/TCBB.2012.138.
Catanzaro, Daniele ; Labbé, M. ; Pesenti, R.. The balanced minimum evolution problem under uncertain data. In: Discrete Applied Mathematics, Vol. 161, no.13-14, p. 1789-1804 (2013). doi:10.1016/j.dam.2013.03.012 (Soumis).
Catanzaro, Daniele ; Gourdin, E. ; Labbé, M. ; Özsoy, F.A.. A branch-and-cut algorithm for the partitioning-hub location-routing problem. In: Computers & Operations Research, Vol. 38, no.2, p. 539-549 (2011). doi:10.1016/j.cor.2010.07.014.
Catanzaro, Daniele ; Labbé, M. ; Porretta, L.. A class representative model for pure parsimony Haplotyping under Uncertain Data. In: PLoS One, Vol. 6, no.3, p. e17937 (2011). doi:10.1371/journal.pone.0017937.
Aringhieri, R. ; Catanzaro, Daniele ; Di Summa, M.. Optimal solutions for the balanced minimum evolution problem. In: Computers & Operations Research, Vol. 38, no.12, p. 1845-1854 (2011). doi:10.1016/j.cor.2011.02.020.
Catanzaro, Daniele ; Labbé, M. ; Salazar-Neumann, M.. Reduction approaches for robust shortest path problems. In: Computers & Operations Research, Vol. 38, no.11, p. 1610-1619 (2011). doi:10.1016/j.cor.2011.01.022.
Catanzaro, Daniele ; Labbé, Martine ; Pesenti, Raffaele ; Salazar-González, Juan-José. The Balanced Minimum Evolution Problem. In: INFORMS Journal on Computing, Vol. 24, no.2, p. 187-341 (2011). doi:10.1287/ijoc.1110.0455.
Catanzaro, Daniele ; Andrien, M. ; Labbé, M. ; Toungouz-Nevessignsky, M.. Computer-aided human leukocyte antigen association studies: A case study for psoriasis and severe alopecia areata. In: Human Immunology, Vol. 71, no.8, p. 783-788 (2010). doi:10.1016/j.humimm.2010.04.003.
Catanzaro, Daniele ; Labbé, Martine ; Godi, Alessandra. A class representative model for pure parsimony haplotyping. In: INFORMS Journal on Computing, Vol. 22, no.2, p. 195-209 (2009).
Catanzaro, Daniele ; Labbé, Martine ; Pesenti, Raffaele ; Salazar-González, Juan-José. Mathematical models to reconstruct phylogenetic trees under the minimum evolution criterion. In: Networks, Vol. 53, no.2, p. 126-140 (2009). doi:10.1002/net.20281.
Catanzaro, Daniele. The minimum evolution problem: Overview and classification. In: Networks, Vol. 53, no.2, p. 112-125 (2009). doi:10.1002/net.20280.
Catanzaro, Daniele ; Pesenti, R. ; Milinkovitch, M.C.. An ant colony optimization algorithm for phylogenetic estimation under the minimum evolution principle. In: Evolutionary Bioinformatics, Vol. 7, no.2, p. 153-163 (2007).
Gatto, Laurent ; Catanzaro, Daniele ; Milinkovitch, Michel C. Assessing the applicability of the GTR nucleotide substitution model through simulations.. In: Evolutionary bioinformatics online, Vol. 2, p. 145-55 (2007).
Catanzaro, Daniele ; Pesenti, R. ; Milinkovitch, M.C.. A non-linear optimization procedure to estimate distances and instantaneous substitution rate matrices under the GTR model. In: Bioinformatics, Vol. 22, no.6, p. 708-715 (2006). doi:10.1093/bioinformatics/btk001.
Catanzaro, Daniele. Estimating phylogenies from molecular data. In: R. Bruni, Mathematical approaches to polymer sequence analysis and related problems, 2011. 978-1-4419-6799-2. doi:10.1007/978-1-4419-6800-5.
Legrand, Emma ; Coppé, Vianney ; Catanzaro, Daniele ; Schaus, Pierre. A Dynamic Programming Approach for the Job Sequencing and Tool Switching Problem (LIDAM Discussion Paper CORE; 2024/30), 2024. 16 p.
Catanzaro, Daniele ; Pesenti, Raffaele ; Ronco, Roberto. Characterizing path-length matrices of unrooted binary trees (LIDAM Discussion Paper CORE; 2024/28), 2024. 27 p.
Catanzaro, Daniele ; Pesenti, Raffaele ; Sapucaia Barboza, Allan ; Wolsey, Laurence. Optimizing over Path-Length Matrices of Unrooted Binary Trees (LIDAM Discussion Paper CORE; 2023/20), 2024. 35 p.
Catanzaro, Daniele ; Frohn, Martin ; Gascuel, Olivier ; Pesenti, Raffaele. A Massively Parallel Exact Solution Algorithm for the Balanced Minimum Evolution Problem (LIDAM Discussion Paper CORE; 2023/01), 2023. 33 p.
Gasparin, Andrea ; Camerota Verdù, Federico Julian ; Catanzaro, Daniele. An evolution strategy approach for the Balanced Minimum Evolution Problem (LIDAM Discussion Paper CORE; 2023/21), 2023. 7 p.
Catanzaro, Daniele ; Frohn, Martin ; Pesenti, Raffaele. A Massively Parallel Exact Solution Algorithm for the Balanced Minimum Evolution Problem (LIDAM Discussion Paper CORE; 2021/23), 2021. 41 p.
Catanzaro, Daniele ; Pesenti, Raffaele ; Ronco, Roberto. A New Fast and Accurate Heuristic for the Automatic Scene Detection Problem (LIDAM Discussion Paper CORE; 2021/22), 2021. 18 p.
Catanzaro, Daniele ; Frohn, Martin ; Gascuel, Olivier ; Pesenti, Raffaele. A Tutorial on the Balanced Minimum Evolution Problem (LIDAM Discussion Paper CORE; 2021/27), 2021. 31 p.
Catanzaro, Daniele ; Pesenti, Raffaele ; Ronco, Roberto. Job Scheduling under Time-of-Use Energy Tariffs for Sustainable Manufacturing: A Survey (LIDAM Discussion Paper CORE; 2021/19), 2021.
Catanzaro, Daniele ; Frohn, Martin ; Pesenti, Raffaele. On Numerical Stability and Statistical Consistency of the Balanced Minimum Evolution Problem (LIDAM Discussion Paper CORE; 2021/26), 2021. 5 p.
Catanzaro, Daniele ; Coniglio, Stefano ; Furini, Fabio. On the exact separation of cover inequalities of maximum-depth (LIDAM Discussion Paper CORE; 2021/18), 2021. 16 p.