INGI
Place Sainte Barbe 2/L5.02.01
1348 Louvain-la-Neuve
- Accueil
- Répertoire
- Siegfried Nijssen
Siegfried Nijssen
Professeur
Stefanija Veljanoska ; Nijssen, Siegfried ; Schaus, Pierre ; John Aoga ; Juhee Bae. Impact of Weather Factors on Migration Intention using Machine Learning Algorithms. In: Operations Research Forum, Vol. Volume 5, no. number 8 (Published: 04 January 2024). doi:10.1007/s43069-023-00271-y.
Gerniers, Alexander ; Nijssen, Siegfried ; Dupont, Pierre. scCross: efficient search for rare subpopulations across multiple single-cell samples. In: Bioinformatics, Vol. 40, no.6, p. btae371 (2024). doi:10.1093/bioinformatics/btae371.
Docquier, Fredérić ; Golenvaux, Nicolas ; Nijssen, Siegfried ; Schaus, Pierre ; Stips, Felix. Cross-border mobility responses to COVID-19 in Europe: new evidence from facebook data. In: Globalization and Health, Vol. 18, no.1, p. 0-17 (2022). doi:10.1186/s12992-022-00832-6.
Latour, Anna L.D. ; Babaki, Behrouz ; Fokkinga, Daniël ; Anastacio, Marie ; Hoos, Holger H. ; Nijssen, Siegfried. Exact stochastic constraint optimisation with applications in network analysis. In: Artificial Intelligence, Vol. 304, no.1, p. 103650 (2022). doi:10.1016/j.artint.2021.103650.
Mattenet, Lucía ; Davidson, Ian ; Nijssen, Siegfried ; Schaus, Pierre. Generic Constraint-based Block Modeling using Constraint Programming. In: Journal of Artificial Intelligence Research, Vol. 70, no. 1, p. 597-630 (2021). doi:10.1613/jair.1.12280.
Mattenet, Alex ; Davidson, Ian ; Nijssen, Siegfried ; Schaus, Pierre. Generic Constraint-based Block Modeling using Constraint Programming. In: Thirty-Fourth AAAI Conference on Artificial Intelligence Thirty-Second Conference on Innovative Applications of Artificial Intel, Vol. 34, no.9, p. 13685-13688 (2020). doi:10.1609/aaai.v34i09.7121 (Accepté/Sous presse).
Verhaeghe, Hélène ; Nijssen, Siegfried ; Pesant, Gilles ; Quimper, Claude-Guy ; Schaus, Pierre. Learning Optimal Decision Trees using Constraint Programming. In: Constraints Journal, Vol. 25, no.3-4, p. 226-250 (2020). doi:10.1007/s10601-020-09312-3.
Meeng, Marvin ; de Vries, Harm ; Flach, Peter ; Nijssen, Siegfried ; Knobbe, Arno. Uni- and multivariate probability density models for numeric subgroup discovery. In: Intelligent Data Analysis, Vol. 24, no.6, p. 1403-1439 (2020). doi:10.3233/ida-194719.
Alex Mattenet ; Ian Davidson ; Nijssen, Siegfried ; Schaus, Pierre. Generic Constraint-based Block Modeling using Constraint Programming. In: Principles and Practice of Constraint Programming, Vol. 25, no.1, p. ?? (2019) (Accepté/Sous presse).
Mattenet, Alex ; Davidson, Ian ; Nijssen, Siegfried ; Schaus, Pierre. Generic Constraint-based Block Modeling using Constraint Programming. In: Proceedings of the Reference AI & ML Conference for Belgium, Netherlands & Luxemburg, Vol. 2491, no.1, p. 1 (2019) (Accepté/Sous presse).
Mattenet, Alex ; Ian Davidson ; Nijssen, Siegfried ; Schaus, Pierre. Generic Constraint-based Block Modeling using Constraint Programming. In: Principles and Practice of Constraint Programming, Vol. 11802, no.1, p. 656-673 (2019). doi:10.1007/978-3-030-30048-7_38.
Guns, Tias ; Dries, Anton ; Nijssen, Siegfried ; Tack, Guido ; De Raedt, Luc. MiningZinc: A declarative framework for constraint-based mining. In: Artificial Intelligence, Vol. 244, p. 6-29 (2017). doi:10.1016/j.artint.2015.09.007.
Le Van, Thanh ; Nijssen, Siegfried ; van Leeuwen, Matthijs ; De Raedt, Luc. Semiring Rank Matrix Factorization. In: IEEE Transactions on Knowledge & Data Engineering, Vol. 29, no.8, p. 1737-1750 (2017). doi:10.1109/TKDE.2017.2688374.
Bessiere, Christian ; De Raedt, Luc ; Guns, Tias ; Kotthoff, Lars ; Nanni, Mirco ; Nijssen, Siegfried ; O'Sullivan, Barry ; Paparrizou, Anastasia ; Pedreschi, Dino ; Simonis, Helmut. The Inductive Constraint Programming Loop. In: IEEE Intelligent Systems, Vol. 32, no.5, p. 44-52 (18-10-2017). doi:10.1109/MIS.2017.3711637.
Le Van, Thanh ; van Leeuwen, Matthijs ; Carolina Fierro, Ana ; De Maeyer, Dries ; Van den Eynden, Jimmy ; Verbeke, Lieven ; De Raedt, Luc ; Marchal, Kathleen ; Nijssen, Siegfried. Simultaneous discovery of cancer subtypes and subtype features by molecular data integration. In: Bioinformatics, Vol. 32, no.17, p. i445-i454 (2016). doi:10.1093/bioinformatics/btw434.
Dzyuba, Vladimir ; Leeuwen, Matthijs van ; Nijssen, Siegfried ; De Raedt, Luc. Interactive learning of pattern rankings. In: International Journal on Artificial Intelligence Tools, Vol. 23, no.06, p. 1460026 (2014). doi:10.1142/S0218213014600264.
Mampaey, Michael ; Nijssen, Siegfried ; Feelders, Ad ; Konijn, Rob ; Knobbe, Arno. Efficient algorithms for finding optimal binary features in numeric and nominal labeled data. In: Knowledge and Information Systems, Vol. 42, no.2, p. 465-492 (2013). doi:10.1007/s10115-013-0714-y.
Blockeel, Hendrik ; Kersting, Kristian ; Nijssen, Siegfried ; Železný, Filip. Guest editor’s introduction: special issue of the ECML PKDD 2013 journal track. In: Machine Learning, Vol. 93, no.1, p. 1-3 (2013). doi:10.1007/s10994-013-5400-5.
Blockeel, Hendrik ; Kersting, Kristian ; Nijssen, Siegfried ; Železný, Filip. Guest editor’s introduction: special issue of the ECML PKDD 2013 journal track. In: Data Mining and Knowledge Discovery, Vol. 27, no.3, p. 291-293 (2013). doi:10.1007/s10618-013-0332-z.
Guns, Tias ; Nijssen, Siegfried ; De Raedt, Luc. k-Pattern set mining under constraints. In: IEEE Transactions on Knowledge & Data Engineering, Vol. 25, no.2, p. 402-418 (2013). doi:10.1109/TKDE.2011.204.
Renkens, Joris ; Van den Broeck, Guy ; Nijssen, Siegfried. k-Optimal: a novel approximate inference algorithm for ProbLog. In: Machine Learning, Vol. 89, no.3, p. 215-231 (2012). doi:10.1007/s10994-012-5304-9.
Guns, Tias ; Nijssen, Siegfried ; De Raedt, Luc. Itemset mining: a constraint programming perspective. In: Artificial Intelligence, Vol. 175, no.12-13, p. 1951-1983 (2011). doi:10.1016/j.artint.2011.05.002.
Dries, Anton ; De Raedt, Luc ; Nijssen, Siegfried. Mining predictive k-CNF expressions. In: IEEE Transactions on Knowledge & Data Engineering, Vol. 22, no.5, p. 743-748 (2010). doi:10.1109/TKDE.2009.152.
Nijssen, Siegfried ; Fromont, Elisa. Optimal constraint-based decision tree induction from itemset lattices. In: Data Mining and Knowledge Discovery, Vol. 21, no.1, p. 9-51 (2010). doi:10.1007/s10618-010-0174-x.
Ramon, Jan ; Nijssen, Siegfried. Polynomial-delay enumeration of monotonic graph classes. In: Journal of Machine Learning Research, Vol. 10, p. 907-929 (2009).
Kazius, Jeroen ; Nijssen, Siegfried ; Kok, Joost ; Bäck, Thomas ; IJzerman, Adriaan P.. Substructure mining using elaborate chemical representation. In: Journal of Chemical Information and Modeling, Vol. 46, no.2, p. 597-605 (2006). doi:10.1021/ci0503715.
Chi, Yun ; Muntz, Richard R. ; Nijssen, Siegfried ; Kok, Joost. Frequent subtree mining - an overview. In: Fundamenta Informaticae - Advances in Mining Graphs, Trees and Sequences, Vol. 66, no.1-2, p. 161-198 (17-6-2005).
Goethals, Bart ; Nijssen, Siegfried ; Zaki, Mohammed J.. Open source data mining. In: SIGKDD Explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining, Vol. 7, no.2, p. 143-144 (2005). doi:10.1145/1117454.1117476.
Nijssen, Siegfried ; Kok, Joost. The Gaston tool for frequent subgraph mining. In: Electronic Notes in Theoretical Computer Science, Vol. 127, no.1, p. 77-87 (2005). doi:10.1016/j.entcs.2004.12.039.
Nijssen, Siegfried ; Bäck, Thomas. An analysis of the behavior of simplified evolutionary algorithms on trap functions. In: IEEE Transactions on Evolutionary Computation, Vol. 7, no.1, p. 11-22 (2003). doi:10.1109/TEVC.2002.806169.
Data Mining and Constraint Programming - Foundations of a Cross-Disciplinary Approach, éd. Bessiere, Christian ; De Raedt, Luc ; Kotthoff, Lars ; Nijssen, Siegfried ; O'Sullivan, Barry ; Pedreschi, Dino (Lecture Notes in Computer Science; 10101), Springer, 2016. 9783319501369 ; 9783319501376. 349 p.
Constraints, optimization and data (Dagstuhl Seminar 14411), éd. De Raedt, Luc ; Nijssen, Siegfried ; O'Sullivan, Barry ; Sebag, Michèle (Dagstuhl Reports), 2014.
Machine learning and knowledge discovery in databases, European Conference, ECML PKDD 2013, Proceedings, Part I, éd. Blockeel, Hendrik ; Kersting, Kristian ; Nijssen, Siegfried ; Zelezny, Filip (Lecture Notes in Computer Science; 8188), Springer, 2013. 978-3-642-40988-2.
Machine learning and knowledge discovery in databases, European Conference, ECML PKDD 2013, Proceedings, Part II, éd. Blockeel, Hendrik ; Kersting, Kristian ; Nijssen, Siegfried ; Zelezny, Filip (Lecture Notes in Computer Science; 8189), Springer, 2013. 978-3-642-40991-2.
Machine learning and knowledge discovery in databases, European Conference, ECML PKDD 2013, Proceedings, Part III, éd. Blockeel, Hendrik ; Kersting, Kristian ; Nijssen, Siegfried ; Zelezny, Filip (Lecture Notes in Computer Science; 8190), Springer, 2013. 978-3-642-40994-3.
Proceedings of the ECML PKDD workshop on instant interactive data mining, éd. Vreeken, Jilles ; Tatti, Nikolaj ; Goethals, Bart ; Dries, Anton ; van Leeuwen, Matthijs ; Nijssen, Siegfried (Workshop of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)). Bristol, UK, 2012.
Constraint programming meets machine learning and data mining (Dagstuhl Seminar 11201), éd. De Raedt, Luc ; Nijssen, Siegfried ; O'Sullivan, Barry ; Van Hentenryck, Pascal (Dagstuhl Reports), 2011.
MGTS 2005: Proceedings of the 3rd International Workshop on Mining Graphs, Trees and Sequences , éd. Meinl, Thorsten ; Nijssen, Siegfried ; Karypis, George (Workshop of the 16th European Conference on Machine Learning (ECML) and the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD)), 2005.
Proceedings of the 1st international workshop on open source data mining: frequent pattern mining implementations, éd. Goethals, Bart ; Nijssen, Siegfried ; Zaki, Mohammed J. (KDD '05 The Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining), 2005.
Dries, Anton ; Guns, Tias ; Nijssen, Siegfried ; Babaki, Behrouz ; Le Van, Thanh ; Negrevergne, Benjamin ; Paramonov, Sergey ; De Raedt, Luc. Modeling in MiningZinc. In: Christian Bessiere, Luc De Raedt, Lars Kotthoff, Siegfried Nijssen, Barry O'Sullivan, Dino Pedreschi, Data Mining and Constraint Programming - Foundations of a Cross-Disciplinary Approach (Lecture Notes in Computer Science; 10101), Springer, 2016, p. 257-281. 978-3-319-50137-6. doi:10.1007/978-3-319-50137-6_10.
Grossi, Valerio ; Guns, Tias ; Monreale, Anna ; Nanni, Mirco ; Nijssen, Siegfried. Partition-Based Clustering Using Constraint Optimization. In: Christian Bessiere, Luc De Raedt, Lars Kotthoff, Siegfried Nijssen, Barry O'Sullivan, Dino Pedreschi, Data mining and constraint programming - Foundations of a Cross-Disciplinary Approach (Lecture Notes in Computer Science; 10101), Springer, 2016, p. 282-299. 978-3-319-50137-6. doi:10.1007/978-3-319-50137-6_11.
Bessiere, Christian ; De Raedt, Luc ; Guns, Tias ; Kotthoff, Lars ; Nanni, Mirco ; Nijssen, Siegfried ; O'Sullivan, Barry ; Paparrizou, Anastasia ; Pedreschi, Dino ; Simonis, Helmut. The Inductive Constraint Programming Loop: Extended Abstract. In: Christian Bessiere, Luc De Raedt, Lars Kotthoff, Siegfried Nijssen, Barry O'Sullivan, Dino Pedreschi, Constraint programming and Data Mining - Foundations of a Cross-Disciplinary Approach (Lecture Notes in Computer Science; 10101), Springer, 2016, p. 303-309. 978-3-319-50137-6. doi:10.1007/978-3-319-50137-6_12.
Nijssen, Siegfried ; Zimmermann, Albrecht. Constraint-based pattern mining. In: Charu Aggarwal and Jiawei Han, Frequent pattern mining, Springer, 2014, p. 147-163. 978-3-319-07820-5. doi:10.1007/978-3-319-07821-2.
Zimmermann, Albrecht ; Nijssen, Siegfried. Supervised pattern mining and applications to classification. In: Charu Aggarwal and Jiawei Han, Frequent Pattern Mining, Springer, 2014, p. 425-442. 978-3-319-07820-5.
Dries, Anton ; Nijssen, Siegfried ; De Raedt, Luc. BiQL: A query language for analyzing information networks. In: Michael R. Berthold, Bisociative Knowledge Discovery - An Introduction to Concept, Algorithms, Tools, and Applications (Lecture Notes in Computer Science; 7250), 2012, p. 147-165. 978-3-642-31829-0.
Nijssen, Siegfried. Constraint-based mining. In: Claude Sammut et Geoffrey I. Webb, Encyclopedia of Machine Learning, 2010, p. 221-225. 978-0-387-30768-8. doi:10.1007/978-0-387-30164-8_164.
Bringmann, Björn ; Nijssen, Siegfried ; Zimmermann, Albrecht. From local patterns to classification models. In: Sašo DžeroskiBart GoethalsPanče Panov, Inductive Databases and Constraint-Based Data Mining, 2010, p. 127-154. 978-3-319-50137-6. doi:10.1007/978-1-4419-7738-0_6.
Besson, Jérémy ; Boulicaut, Jean-François ; Guns, Tias ; Nijssen, Siegfried. Generalizing itemset mining in a constraint programming setting. In: Saso Dzeroski, Bart Goethals, Pance Panov, Inductive Databases and Constraint-Based Data Mining, 2010. 978-1-4419-7737-3. doi:10.1007/978-1-4419-7738-0_5.
King, Ross D. ; Schierz, Amanda C. ; Clare, Amanda ; Rowland, Jem J. ; Sparkes, Andrew ; Nijssen, Siegfried ; Ramon, Jan. Inductive queries for a drug designing robot scientist. In: Sašo DžeroskiBart GoethalsPanče Panov, Inductive Databases and Constraint-Based Data Mining, 2010. 978-3-319-50137-6. doi:10.1007/978-1-4419-7738-0_18.
Nijssen, Siegfried. Tree mining. In: Claude Sammut et Geoffrey I. Webb, Encyclopedia of Machine Learning, 2010, p. 991-999. 978-0-387-30768-8. doi:10.1007/978-0-387-30164-8_851.
Lienard, Julien ; Mens, Kim ; Nijssen, Siegfried. Améliorer le retour aux étudiants par de tests unitaires générés à partir de motifs trouvés dans le code de leurs programmes. Didapro - DidaSTIC Didactique de l'informatique et des STIC (Louvain-la-Neuve, Belgique, du 30/01/2024 au 01/02/2024).
Véjar, Bastián ; Aglin, Gaël ; Mahmutoğulları, Ali İrfan ; Nijssen, Siegfried ; Schaus, Pierre ; Guns, Tias. An Efficient Structured Perceptron for NP-Hard Combinatorial Optimization Problems. International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research (Uppsala, Sweden, du 28/05/2024 au 31/07/2024). In: LNCS, Vol. 14743 (2024). doi:10.1007/978-3-031-60599-4_17.
Dubray, Alexandre ; Schaus, Pierre ; Nijssen, Siegfried. Anytime Weighted Model Counting with Approximation Guarantees For Probabilistic Inference. International Conference on Principles and Practice of Constraint Programming (Girona, Spain, du 02/09/2024 au 06/09/2024).
Ronval, Benoît ; Nijssen, Siegfried ; Ludwig Bothmann. Can generative AI-based data balancing mitigate unfairness issues in Machine Learning?. Third European Workshop on Algorithmic Fairness, 2024 (Mainz, Germany, du 01/07/2024 au 03/07/2024).
Kiossou, Harold ; Schaus, Pierre ; Nijssen, Siegfried ; Aglin, Frédéric. Efficient Lookahead Decision Trees. International Symposium on Intelligent Data Analysis (STOCKHOLM, SWEDEN, du 24/04/2024 au 26/07/2024). In: Lecture Notes in Computer Science : Advances in Intelligent Data Analysis XXII (LNCS; 14642), Springer, 2024. 9783031585555, p. 133-144. doi:10.1007/978-3-031-58553-1_11.
Dierckx, Lucile ; Dubray, Alexandre ; Nijssen, Siegfried. Parameter Learning using Approximate Model Counting. 18th International conference on Neural-Symbolic Learning and Reasoning (Barcelona, du 09/09/2024 au 12/09/2024).
Ronval, Benoît. Assessing and improving the robustness of Binarized Neural Networks. Workshop VeriLearn (Krakow, Poland, du 30/09/2023 au 04/10/2023).
Lienard, Julien ; Mens, Kim ; Nijssen, Siegfried. Extracting Unit Tests from Patterns Mined in Student Code to Provide Improved Feedback in Autograders. Seminar Series on Advanced Techniques & Tools for Software Evolution (SATToSE) (Salerno, Italie, du 12/06/2023 au 15/06/2023). In: Seminar on Advanced Techniques & Tools for Software Evolution, Vol. 3483, p. 48--56 (13 Sep 2023).
Golenvaux ; Gillard, Xavier ; Nijssen, Siegfried ; Schaus, Pierre. Partitioning a Map into Homogeneous Contiguous Regions: A Branch-And-Bound Approach Using Decision Diagrams. 29th International Conference on Principles and Practice of Constraint Programming (CP 2023) (Toronto, Canada, du 27/08/2023 au 31/08/2023). In: Leibniz International Proceedings in Informatics (LIPIcs), (2023). doi:10.4230/LIPIcs.CP.2023.45.
Dubray, Alexandre ; Schaus, Pierre ; Nijssen, Siegfried. Probabilistic Inference by Projected Weighted Model Counting on Horn Clauses. International Conference on Principles and Practice of Constraint Programming (Toronto, Canada, du 27/08/2023 au 31/08/2023). In: Proceedings CP 2023, (2023).
Dierckx, Lucile ; Veroneze, Rosana ; Nijssen, Siegfried. RL-Net: Interpretable Rule Learning with Neural Networks. Pacific-Asia Conference on Knowledge Discovery and Data Mining (Osaka, Japan, du 25/05/2023 au 28/05/2023). In: Advances in Knowledge Discovery and Data Mining: 27th Pacific-Asia Conference, PAKDD 2023, May 25-28, Proceedings, (2023). doi:10.1007/978-3-031-33374-3_8.
Dierckx, Lucile ; Beauvois, Mélanie ; Nijssen, Siegfried. Detection and Multi-label Classification of Bats. Symposium on Intelligent Data Analysis (Rennes, France, du 20/04/2022 au 22/04/2022). In: Advances in Intelligent Data Analysis, Vol. 20 (2022). doi:10.1007/978-3-031-01333-1_5.
Aglin, Gael ; Nijssen, Siegfried ; Schaus, Pierre. Learning Optimal Decision Trees Under Memory Constraints. European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD) (Grenoble, France, du 19/09/2022 au 23/09/2022).
Dubray, Alexandre ; Derval, Guillaume ; Nijssen, Siegfried ; Schaus, Pierre. Optimal Decoding of Hidden Markov Models With Consistency Constraints. International Conference on Discovery Science (Montpellier, France, du 10/10/2022 au 12/10/2022). In: Proceedings of the 25th International Conference on Discovery Science, (2022).
Kiossou, Harold ; Schaus, Pierre ; Nijssen, Siegfried ; Houndji, Ratheil. Time constrained DL8.5 using Limited Discrepancy Search. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (Grenoble, France, du 19/09/2022 au 23/09/2022). In: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, (2022) (Accepté/Sous presse).
Dubray, Alexandre ; Nijssen, Siegfried ; Thomas, Isabelle ; Schaus, Pierre. A Seriation Based Framework to Visualize Multiple Aspects of Road Transport from GPS Trajectories. International Intelligent Transportation System Conference (Indianapolis, IN, USA, du 19/09/2021 au 22/09/2021). In: IEEE Intelligent Transportation Systems Conference. Proceedings, (2021).
Verhaeghe, Hélène ; Nijssen, Siegfried ; Pesant, Gilles ; Quimper, Claude-Guy ; Schaus, Pierre. Apprentissage d’arbres de décision optimaux grâce à la programmation par contraintes. Seizième journées Francophones de Programmation par Contraintes (JFPC21) (Nice, France (Online), du 22/06/2021 au 24/06/2021).
Aglin, Gael ; Nijssen, Siegfried ; Schaus, Pierre. Assessing Optimal Forests of Decision Trees. International Conference on Tools with Artificial Intelligence (ICTAI) (du 01/11/2021 au 03/11/2021). In: 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), 2021. 978-1-6654-0899-8. doi:10.1109/ICTAI52525.2021.00013.
Van Vracem, Gauthier ; Nijssen, Siegfried. Iterated Matrix Reordering. Machine Learning and Knowledge Discovery in Databases, European Conference (Bilbao, Spain, du 13/09/2021 au 17/09/2021). In: Machine Learning and Knowledge Discovery in Databases, European Conference, ECML PKDD 2021, Proceedings, Part III (Lecture Notes in Computer Science; 12977), 2021. 9783030865221, p. 745-761. doi:10.1007/978-3-030-86523-8_45.
Mens, Kim ; Nijssen, Siegfried ; Pham, Hoang Son. The good, the bad, and the ugly: mining for patterns in student source code. The 3rd International Workshop on Education through Advanced Software Engineering and Artificial Intelligence (Athens Greece). In: EASEAI 2021: Proceedings of the 3rd International Workshop on Education through Advanced Software Engineering and Artificial Int, 2021. 978-1-4503-8624-1, p. 1-8. doi:10.1145/3472673.3473958.
Aglin, Gael ; Nijssen, Siegfried ; Schaus, Pierre. Learning Optimal Decision Trees Using Caching Branch-and-Bound Search. Thirty-Fourth AAAI Conference on Artificial Intelligence (New york, du 07/02/2020 au 12/02/2020) (Accepté/Sous presse).
Verhaeghe, Hélène ; Nijssen, Siegfried ; Pesant, Gilles ; Quimper, Claude-Guy ; Schaus, Pierre. Learning Optimal Decision Trees using Constraint Programming (Extended Abstract). Twenty-Ninth International Joint Conference on Artificial Intelligence IJCAI20 (Yokohama, Japan). In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI2020, Vol. 2020, no.1, p. 4765-4769 (2020).
Dubray, Alexandre ; Derval, Guillaume ; Nijssen, Siegfried ; Schaus, Pierre. Mining Constrained Regions of Interest: An Optimization Approach. Discovery Science 2020 (du 19/10/2020 au 21/10/2020). In: Proceedings Discovery Science 2020, (2020).
Mens, Kim ; Nijssen, Siegfried ; Pham, Hoang Son ; Fabry, Johan ; Zaytsev, Vadim. Pattern Mining for Systematic Code Changes. BElgian-NEtherlands EVOLution seminar (BENEVOL 2020) (Luxembourg (Virtual Event), du 03/12/2020 au 04/12/2020).
Aglin, Gael ; Nijssen, Siegfried ; Schaus, Pierre. PyDL8.5: a Library for Learning Optimal Decision Trees. International Joint Conference on Artificial Intelligence. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, 2020. 978-0-9992411-6-5, p. 5222-5224.
Kiossou, Harold ; Schenk, Yannik ; Docquier, Frédéric ; Houdji, Vinasetan Ratheil ; Nijssen, Siegfried ; Schaus, Pierre. Using an interpretable Machine Learning approach to study the drivers of International Migration. AI For Social Good 2020 (du 20/07/2020 au 21/07/2020). In: AI4SG, (2020).
Dario Di Nucci ; Pham, Hoang Son ; Fabry, Johan ; Coen De Roover ; Mens, Kim ; Molderez, Tim ; Nijssen, Siegfried ; Zaytsev, Vadim. A Language-Parametric Modular Framework for Mining Idiomatic Code Patterns. Seminar on Advanced Techniques Tools for Software Evolution (SATToSE 2019) (Bolzano, Italy, du 08/07/2019 au 10/07/2019). In: CEUR Workshop Proceedings, Vol. 2510, no.6-Dec-2019, p. 7 (2019).
Mattenet, Alex ; Ian Davidson ; Nijssen, Siegfried ; Schaus, Pierre. Generic Constraint-based Block Modeling using Constraint Programming. 31st Benelux Conference on Artificial Intelligence (BNAIC 2019) (Brussels, du 06/11/2019 au 08/11/2019).
Verhaeghe, Hélène ; Nijssen, Siegfried ; Pesant, Gilles ; Quimper, Claude-Guy ; Schaus, Pierre. Learning Optimal Decision Trees using Constraint Programming. The 25th International Conference on Principles and Practice of Constraint Programming (CP2019) (Stamford, USA, du 30/09/2019 au 04/10/2019) (Soumis).
Verhaeghe, Hélène ; Nijssen, Siegfried ; Pesant, Gilles ; Quimper, Claude-Guy ; Schaus, Pierre. Learning Optimal Decision Trees using Constraint Programming (abstract). BNAIC/BENELEARN 2019 (Bruxelles, du 06/11/2019 au 08/11/2019). In: Proceedings of the 31st Benelux Conference on Artificial Intelligence (BNAIC 2019) and the 28th Belgian Dutch C, Vol. CEUR Workshop Proceedings, no.2491, p. 1 (2019).
Pham, Hoang Son ; Nijssen, Siegfried ; Mens, Kim. Mining Patterns in Source Code Using Tree Mining Algorithms. DS2019- 22nd International Conference on Discovery Science (Split, Croatia, du 28/10/2019 au 30/10/2019). In: Lecture Notes in Computer Science, Vol. 11828, no.11828, p. 471-480 (2019). doi:10.1007/978-3-030-33778-0_35.
Aoga, John ; Nijssen, Siegfried ; Schaus, Pierre. Modeling Pattern Set Mining using Boolean Circuits. the 25th International Conference on Principles and Practice of Constraint Programming (Stamford, CT, U.S., du 30/09/2019 au 04/10/2019) (Accepté/Sous presse).
Fokkinga, Daniël ; Latour, Anna Louise D. ; Anastacio, Marie ; Nijssen, Siegfried ; Hoos, Holger. Programming a Stochastic Constraint Optimisation Algorithm, by Optimisation. IJCAI Workshop on Data Science meets Optimisation (Macao, China, 11/8/2019). In: Proceedings of the IJCAI Worskhop on Data Science meets Optimisation, , p. 1-8 (2019).
Latour, Anna Louise D. ; Babaki, Behrouz ; Nijssen, Siegfried. Stochastic Constraint Propagation for Mining Probabilistic Networks. Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19} (Macao, China, du 10/8/2019 au 16/8/2019). In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, International Joint Conferences on Artificial Intelligence Organization, 2019. 9780999241141. doi:10.24963/ijcai.2019/159.
Bollen, Thomas ; Leurquin, Guillaume ; Nijssen, Siegfried. ConvoMap: Using Convolution to Order Boolean Data. Intelligent Data Analysis ('s-Hertogenbosch, du 24/10/2018 au 26/10/2018). In: Advances in Intelligent Data Analysis XVII - 17th International Symposium, IDA 2018, Proceedings (Lecture Notes in Computer Science; 11191), Springer: Switzerland, 2018. 978-3-030-01768-2, p. 62-74. doi:10.1007%2F978-3-030-01768-2_6.
Aoga, John ; Guns, Tias ; Nijssen, Siegfried ; Schaus, Pierre. Finding Probabilistic Rule Lists using the Minimum Description Length Principle. 21st International Conference on Discovery Science (DS 2018) (Limassol, Cyprus , du 29/10/2018 au 31/10/2018). In: Discovery Science 21th International Conference, DS 2018, Limassol, Cyprus, October 29–31, 2018, Proceedings, (2018).
Latour, Anna ; Babaki, Behrouz ; Nijssen, Siegfried. Stochastic Constraint Optimization using Propagation on Ordered Binary Decision Diagrams. International Workshop on Statistical Relational AI (Stockholm, 14/07/2018) (Accepté/Sous presse).
Cachucho, Ricardo ; Nijssen, Siegfried ; Knobbe, Arno. Biclustering multivariate time series . Intelligent Data Analysis (London, UK). In: Advances in Intelligent Data Analysis XVI - 16th International Symposium, IDA 2017, Proceedings, 2017.
Latour, Anna ; Babaki, Behrouz ; Dries, Anton ; Kimmig, Angelika ; Van den Broeck, Guy ; Nijssen, Siegfried. Combining stochastic constraint optimization and probabilistic programming: from knowledge compilation to constraint solving. Principles and Practice of Constraint Programming (Melbourne, Australia). In: Principles and Practice of Constraint Programming - 22nd International Conference, Proceedings, 2017.
Demesmaeker, Florian ; Ghrab, Amine ; Nijssen, Siegfried ; Skhiri, Sabri. Discovering interesting patterns in large graph cubes. Fourth International Workshop on High Performance Big Graph Data Management, Analysis, and Mining, in conjunction with the 2017 IEEE International Conference on Big Data (IEEE BigData 2017) (Boston, MA, USA, 11/12/2017). In: Proceedings of the Fourth International Workshop on High Performance Big Graph Data Management, Analysis, and Mining, in conjunction with the 2017 IEEE International Conference on Big Data (IEEE BigData 2017), I E E E, 2017. 978-1-5386-2715-0, p. 3322-3331. doi:10.1109/BigData.2017.8258317.
Cachucho, Ricardo ; Liu, Kaihua ; Nijssen, Siegfried ; Knobbe, Arno. Bipeline: A web-based visualization tool for biclustering of multivariate time series. Machine Learning and Knowledge Discovery in Databases, European Conference (Riva del Garda, Italy). In: Machine Learning and Knowledge Discovery in Databases, European Conference, ECML PKDD 2014, Proceedings, Part III (Lecture Notes in Computer Science; 9853), 2016. 978-3-319-46130-4, p. 12-16.
Guns, Tias ; Dries, Anton ; Tack, Guido ; Nijssen, Siegfried ; De Raedt, Luc. Automatic solver chaining in MiningZinc. International Workshop on Constraint Modelling and Reformulation (Cork, Ireland). In: Proceedings of the 14th International Workshop on Constraint Modelling and Reformulation (ModRef), 2015.
Babaki, Behrouz ; Guns, Tias ; Nijssen, Siegfried ; De Raedt, Luc. Constraint-based querying for Bayesian network exploration. Intelligent Data Analysis (Saint Etienne, France). In: Advances in Intelligent Data Analysis XIV - 14th International Symposium, IDA 2015, Proceedings (Lecture Notes in Computer Science; 9385), 2015. 978-3-319-24464-8, p. 13-24.
Aksehirli, Emin ; Nijssen, Siegfried ; van Leeuwen, Matthijs ; Goethals, Bart. Finding subspace clusters using ranked neighborhoods. International Workshop on High Dimensional Data Mining (Atlantic City, New Jersey). In: Proceedings of the 3rd International Workshop on High Dimensional Data Mining, Workshop at the 15th IEEE International Conference on Data Mining, ICDM 2015, 2015. 978-1-4673-8493-3, p. 831-838.
Le Van, Thanh ; van Leeuwen, Matthijs ; Nijssen, Siegfried ; De Raedt, Luc. Rank matrix factorisation. Knowledge Discovery and Data Mining, 19th Pacific-Asia Conference (Ho Chi Minh City, Vietnam). In: Advances in Knowledge Discovery and Data Mining, 19th Pacific-Asia Conference, PAKDD 2015, Proceedings, Part I (Lecture Notes in Computer Science; 9077), 2015. 978-3-319-18037-3, p. 734-746.
Babaki, Behrouz ; Guns, Tias ; Nijssen, Siegfried. Constrained clustering using column generation. Integration of AI and OR Techniques in Constraint Programming (Cork, Ireland). In: Integration of AI and OR Techniques in Constraint Programming - 11th International Conference, CPAIOR 2014 (Lecture Notes in Computer Science; 8451), 2014. 978-3-319-07045-2, p. 438-454.
Cachucho, Ricardo ; Meeng, Marvin ; Vespier, Ugo ; Nijssen, Siegfried ; Knobbe, Arno. Mining multivariate time series with mixed sampling rates. The 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing (Seattle, Washington). In: UbiComp '14 Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2014. 978-1-4503-2968-2, p. 413-423. doi:10.1145/2632048.2632061.
Le Van, Thanh ; van Leeuwen, Matthijs ; Nijssen, Siegfried ; Fierro, Ana Carolina ; Marchal, Kathleen ; De Raedt, Luc. Ranked tiling. Machine Learning and Knowledge Discovery in Databases, European Conference (Nancy, France). In: Machine Learning and Knowledge Discovery in Databases, European Conference, ECML PKDD 2014, Proceedings, Part II (Lecture Notes in Computer Science; 8725), 2014. 978-3-662-44850-2, p. 98-113.
Dzyuba, Vladimir ; Leeuwen, Matthijs Van ; Nijssen, Siegfried ; De Raedt, Luc. Active preference learning for ranking patterns. The 25th International Conference on Tools with Artificial Intelligence (Herndon, VA, USA). In: 2013 IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI), 2013. 978-1-4799-2971-9, p. 532-539. doi:10.1109/ICTAI.2013.85.
Negrevergne, Benjamin ; Dries, Anton ; Guns, Tias ; Nijssen, Siegfried. Dominance programming for itemset mining. The 13th IEEE International Conference on Data Mining (Dallas, TX, USA). In: ICDM'13 Proceedings the 13th IEEE International Conference on Data Mining, 2013. 978-0-7695-5108-1, p. 557-566. doi:10.1109/ICDM.2013.92.
Gilpin, Sean ; Nijssen, Siegfried ; Davidson, Ian. Formalizing hierarchical clustering as Integer Linear Programming. The 27th AAAI Conference on Artificial Intelligence (Bellevue, Washington). In: Proceedings of the 27th AAAI Conference on Artificial Intelligence, 2013. 978-1-57735-615-8.
Vespier, Ugo ; Nijssen, Siegfried ; Knobbe, Arno. Mining characteristic multi-scale motifs in sensor-based time series. The 22nd ACM conference on Information and knowledge management (San Francisco, California, USA). In: CIKM '13 Proceedings of the 22nd ACM conference on Information and knowledge management, 2013. 978-1-4503-2263-8, p. 2393-2398. doi:10.1145/2505515.2505620.
Guns, Tias ; Dries, Anton ; Tack, Guido ; Nijssen, Siegfried ; De Raedt, Luc. MiningZinc: A modeling language for constraint-based mining. The 23rd International joint conference on Artificial intelligence (Beijing, China). In: IJCAI'13 Proceedings of the 23rd international joint conference on Artificial intelligence, 2013. 978-1-57735-633-2, p. 1365-1372.
Guns, Tias ; Dries, Anton ; Tack, Guido ; Nijssen, Siegfried ; De Raedt, Luc. The MiningZinc framework for constraint-based itemset mining. The 13th International Conference on Data Mining, Demo Track (TX, USA). In: Demo track of the 13th IEEE International Conference on Data Mining, ICDM 2013, 2013. 978-0-7695-5109-8. doi:10.1109/ICDMW.2013.38.
Mampaey, Michael ; Nijssen, Siegfried ; Feelders, Ad ; Knobbe, Arno. Efficient algorithms for finding richer subgroup descriptions in numeric and nominal data. The 12th IEEE International Conference on Data Mining (Brussels, Belgium). In: ICDM'12 Proceedings the 12th IEEE International Conference on Data Mining, 2012. 978-1-4673-4649-8, p. 499-508. doi:10.1109/ICDM.2012.117.
Vespier, Ugo ; Knobbe, Arno ; Nijssen, Siegfried ; Vanschoren, Joaquin. MDL-based analysis of time series at multiple time-scales. Machine Learning and Knowledge Discovery in Databases, European Conference (Bristol, UK). In: Machine Learning and Knowledge Discovery in Databases, European Conference, ECML PKDD 2012, Proceedings, Part II (Lecture Notes in Computer Science; 7524), 2012. 978-3-642-33485-6, p. 371-386.
Le Van, Thanh ; Fierro, Ana Carolina ; Guns, Tias ; van Leeuwen, Matthijs ; Nijssen, Siegfried ; De Raedt, Luc ; Marchal, Kathleen. Mining local staircase patterns in noisy data. International workshop on Co-Clustering and Applications (Brussels, Belgium). In: Co-Clustering and Applications, Workshop at the 12th IEEE International Conference on Data Mining, ICDM 2012, 2012. 978-1-4673-5164-5.
Dries, Anton ; Nijssen, Siegfried. Mining patterns in networks using homomorphism. SIAM International Conference on Data Mining (Anaheim, California). In: Proceedings of the SIAM International Conference on Data Mining, SDM 2012, 2012. 978-1-61197-232-0, p. 260-271.
Nijssen, Siegfried ; Jiménez, Aída ; Guns, Tias. Constraint-based pattern mining in multi-relational databases. Workshop on Declarative Pattern Mining (Vancouver, BC, Canada). In: Declarative Pattern Mining, Workshop at the 11th IEEE International Conference on Data Mining, ICDM 2011, 2011. 978-0-7695-4409-0.
Guns, Tias ; Nijssen, Siegfried ; Zimmermann, Albrecht ; De Raedt, Luc. Declarative heuristic search for pattern set mining. Workshop on Declarative Pattern Mining (Vancouver, BC, Canada). In: Declarative Pattern Mining, Workshop at the 11th IEEE International Conference on Data Mining, ICDM 2011, 2011. 978-0-7695-4409-0.
Guns, Tias ; Nijssen, Siegfried ; De Raedt, Luc. Evaluating Pattern Set Mining Strategies in a Constraint Programming Framework. Knowledge Discovery and Data Mining, 15th Pacific-Asia Conference (Shenzhen, China). In: Advances in Knowledge Discovery and Data Mining, 15th Pacific-Asia Conference, PAKDD 2011, Proceedings, Part II (Lecture Notes in Computer Science; 6635), 2011. 978-3-642-20846-1, p. 382-394. doi:10.1007/978-3-642-20847-8_32.
De Raedt, Luc ; Nijssen, Siegfried. Machine learning and data mining: challenges and opportunities for constraint programming (tutorial). Constraint programming (Perugia, Italy).
Renkens, Joris ; Van den Broeck, Guy ; Nijssen, Siegfried. k-Optimal: a novel approximate inference algorithm for ProbLog. The 21th Conference on Inductive Logic Programming (Windsor Great Park, UK). In: Inductive Logic Programming - 21st International Conference, ILP 2011, Revised Selected Papers (Lecture Notes in Computer Science; 7207), 2011. 10.1007/978-3-642-31951-8_7, p. 33-38.
Dries, Anton ; Nijssen, Siegfried. Analyzing graph databases by aggregate queries. The 8th Workshop on Mining and Learning with Graphs (Washington DC, USA). In: MLG'10 Proceedings of the 8th Workshop on Mining and Learning with Graphs, 2010. 978-1-4503-0214-2. doi:10.1145/1830252.1830258.
Guns, Tias ; Sun, Hong ; Marchal, Kathleen ; Nijssen, Siegfried. Cis-regulatory module detection using constraint programming. 2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (Hong Kong, China). In: 2010 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2010, I E E E, 2010. 978-1-4244-8306-8. doi:10.1109/BIBM.2010.5706592.
De Raedt, Luc ; Guns, Tias ; Nijssen, Siegfried. Constraint programming for data mining and machine learning. The 24th AAAI Conference on Artificial Intelligence (Atlanta, Georgia, USA). In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, 2010.
Nijssen, Siegfried ; Guns, Tias. Integrating constraint programming and itemset mining. Machine Learning and Knowledge Discovery in Databases, European Conference (Barcelona, Spain). In: Machine Learning and Knowledge Discovery in Databases, European Conference, ECML PKDD 2010, Proceedings (Lecture Notes in Computer Science; 6322), 2010. 978-3-642-15882-7, p. 467-482. doi:10.1007/978-3-642-15883-4.
Dries, Anton ; Nijssen, Siegfried ; De Raedt, Luc. A query language for analyzing networks. The 18th ACM conference on Information and knowledge management (Hong Kong, China). In: CIKM '09 Proceedings of the 18th ACM conference on Information and knowledge management, 2009. 978-1-60558-512-3, p. 485-494 . doi:10.1145/1645953.1646016.
Nijssen, Siegfried ; Guns, Tias ; De Raedt, Luc. Correlated itemset mining in ROC space. The 15th ACM SIGKDD international conference (Paris, France). In: KDD '09 Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, 2009. 978-1-60558-495-9, p. 647-656. doi:10.1145/1557019.1557092.
Verbeke, Mathias ; Berendt, Bettina ; Nijssen, Siegfried. Data mining, interactive semantic structuring, and collaboration: a diversity-aware method for sense-making in search. International workshop on Living Web (Washington DC, USA). In: Proceedings of the first international workshop on Living Web, 2009, p. 1-8.
Nijssen, Siegfried ; De Raedt, Luc. Grammar mining. SIAM International Conference on Data Mining (Sparks, Nevada). In: Proceedings of the SIAM International Conference on Data Mining, SDM 2009, 2009. 978-0-89871-682-5, p. 1026-1037. doi:10.1137/1.9781611972795.88.
Bringmann, Björn ; Nijssen, Siegfried ; Zimmermann, Albrecht. Pattern-based classification: a unifying perspective. From Local Patterns to Global Models (Bled, Slovenia). In: From Local Patterns to Global Models, 2nd workshop, LeGo 2009, 2009.
Nijssen, Siegfried. Bayes optimal classification for decision trees. The 25th international conference on Machine learning (Helsinki, Finland). In: ICML '08 Proceedings of the 25th international conference on Machine learning, 2008. 978-1-60558-205-4, p. 696-703. doi:10.1145/1390156.1390244.
De Raedt, Luc ; Guns, Tias ; Nijssen, Siegfried. Constraint programming for itemset mining. The 14th ACM SIGKDD international conference (Las Vegas, Nevada, USA). In: KDD '08 Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, 2008. 978-1-60558-193-4, p. 204-212. doi:10.1145/1401890.1401919.
Blockeel, Hendrik ; Nijssen, Siegfried. Induction of node label controlled graph grammar rules. The 6th Workshop on Mining and Learning with Graphs (Helsinki, Finland). In: MLG'08 Proceedings of the 6th Workshop on Mining and Learning with Graphs, 2008.
Bringmann, Björn ; Nijssen, Siegfried. What is frequent in a single graph?. Knowledge Discovery and Data Mining, 12th Pacific-Asia Conference (Osaka, Japan). In: Advances in Knowledge Discovery and Data Mining, 12th Pacific-Asia Conference, PAKDD 2008, Proceedings (Lecture Notes in Computer Science; 5012), 2008. 978-3-540-68124-3. doi:10.1007/978-3-540-68125-0_84.
Ramon, Jan ; Nijssen, Siegfried. General graph refinement with polynomial delay. Mining and Learning with Graphs (Florence, Italy). In: MLG'07 Proceedings of the 5th Workshop on Mining and Learning with Graphs, 2007.
Nijssen, Siegfried ; De Raedt, Luc. IQL: A proposal for an Inductive Query Language. International Workshop on Knowledge Discovery in Inductive Databases (Berlin, Germany). In: Knowledge Discovery in Inductive Databases, 5th International Workshop, KDID 2006, Berlin, Germany, September 18, 2006, Revised Selected and Invited Papers (Lecture Notes in Computer Science; 4747), 2007. 978-3-540-75548-7. doi:10.1007/978-3-540-75549-4_12.
Nijssen, Siegfried ; Fromont, Elisa. Mining optimal decision trees from itemset lattices. The 13th ACM SIGKDD international conference (San Jose, California, USA). In: KDD '07 Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, 2007. 978-1-59593-609-7, p. 530-539. doi:10.1145/1281192.1281250.
Bringmann, Björn ; Zimmermann, Albrecht ; De Raedt, Luc ; Nijssen, Siegfried. Don't Be Afraid of Simpler Patterns. The 10th European Conference on Principles and Practice of Knowledge Discovery in Databases (Berlin, Germany). In: Knowledge Discovery in Databases: PKDD 2006 (Lecture Notes in Computer Science; 4213), 2006. 3-540-45374-1, p. 55-66. doi:10.1007/11871637_10.
Nijssen, Siegfried ; Kok, Joost. Frequent subgraph miners: runtimes don't say everything. The 4th Workshop on Mining and Learning with Graphs (Berlin, Germany). In: MLG'06 Proceedings of the 4th Workshop on Mining and Learning with Graphs, 2006, p. 173-180.
Nijssen, Siegfried. Mining interpretable subgraphs. The 4th Workshop on Mining and Learning with Graphs (Berlin, Germany). In: MLG'06 Proceedings of the 4th Workshop on Mining and Learning with Graphs, 2006, p. 73-84.
Nijssen, Siegfried ; Kok, Joost. Multi-class correlated pattern mining. International Workshop on Knowledge Discovery in Inductive Databases (Porto, Portugal, 2005). In: Knowledge Discovery in Inductive Databases, 4th International Workshop, KDID 2005, Porto, Portugal, October 3, 2005, Revised Selected and Invited Papers (Lecture Notes in Computer Science; 3933), 2006. 3-540-33292-8, p. 165-187.
Nijssen, Siegfried ; Kok, Joost. A quickstart in frequent structure mining can make a difference. The 2004 ACM SIGKDD international conference (Seattle, WA, USA). In: KDD'04 Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, 2004. 1-58113-888-1, p. 647-652. doi:10.1145/1014052.1014134.
Nijssen, Siegfried ; Kok, Joost. Frequent graph mining and its application to molecular databases. 2004 IEEE International Conference on Systems, Man and Cybernetics (The Hague, The Netherlands, 10-13 Oct. 2004). In: SMC'04 Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 2004. 0-7803-8566-7. doi:10.1109/ICSMC.2004.1401252. doi:10.1109/ICSMC.2004.1401252.
Nijssen, Siegfried ; Kok, Joost. Ideal refinement of Datalog clauses using primary keys. The 16th European Conference on Artificial Intelligence (Valencia, Spain). In: ECAI'04 Proceedings of the 16th European Conference on Artificial Intelligence, 2004. 978-1-58603-452-8.
Nijssen, Siegfried ; Kok, Joost. Efficient discovery of frequent unordered trees. First international workshop on mining graphs, trees and sequences (Cavtat, Croatia). In: MGTS'03 Proceedings of the first international workshop on mining graphs, trees and sequences, 2003.
Nijssen, Siegfried ; Kok, Joost. Efficient frequent query discovery in FARMER. The 7th European Conference on Principles and Practice of Knowledge Discovery in Databases (Cavtat, Croatia). In: Knowledge Discovery in Databases: PKDD 2003 (Lecture Notes in Computer Science; 2838), 2003. 978-3-540-39804-2, p. 350-362. doi:10.1007/978-3-540-39804-2_32.
Nijssen, Siegfried ; Kok, Joost. Faster association rules for multiple relations. The 17th International joint conference on Artificial intelligence (Seattle, Washington, USA). In: IJCAI'01 Proceedings of the 17th international joint conference on Artificial intelligence, 2001. 1-55860-812-5 978-1-558-60812-2, p. 891-896.