Micro and Nano Technologies and Systems

Figure : Concentration of bacterial cells on the capacitive sensor thanks to AC-electrosmosis

The group forms with the CeRMiN, the UCL Research center for micro- and nano-scopic materials and electronics devices a multidisciplinary team, involving both silicon device physicists, technologists and experimentalists, as well as circuit designers. It gathers about 50 members, out of which 5 professors and more than 36 PhD students and researchers.

Principal Investigators :

Denis Flandre, Laurent Francis, Isabelle Huynen, Dimitri Lederer, Sorin Melinte, Jean-Pierre Raskin

Research Labs : 

RF SOI Group, Sensors, Microsystems and Actuators Laboratory of Louvain (SMALL)

Research Areas :     

This activity covers the characterization up to 110 GHz, of bulk and nanocomposite materials in various states: solids, foams, liquids, powders, gels, films, … The models created using these measurements allow to extend the range of application of nanostructures, and to develop new sensors and signal processing devices. Of current interest are ferromagnetic nanowires for tunable electronics, carbonated nanoparticles (carbon nanotubes, graphene) for intelligent packaging (EMI shielding, ESD protection, photovoltaic), and nanoporous thin film membranes for fuel cell applications.

Our current projects aim at understanding the fundamental nanoscience of man-made quantum structures, namely semiconductor nanodevices and hybrid inorganic-organic platforms for molecular opto-electronics and plasmonics. In particular, we use high-resolution nanolithography as well as soft-lithography and bottom-up fabrication techniques to engineer smart nano- and microsystems. Recently, our group started the development of cutting-edge instrumentation in the area of scanning tunneling spectroscopy and near-field experimental setups based on photon detection.

ICTEAM has been active in Silicon-on-Insulator (SOI) technology since 1986. Silicon-on-Insulator (SOI) has been a major theme of R&D for more than 20 years, leading to significant contributions with regards to e.g. double-gate MOSFETs, nanowires, high-temperature SOI CMOS, microwaves and millimeter-waves SOI MOSFETs and substrate, Ultra-Low-Power smart sensors (including biosensors) in terms of processing, characterization, simulation, modeling and design.

Bulk and surface micromachining sensors for chemical, medical and harsh environments applications. The group members are focused on varied devices design and fabrication of MEMS and NEMS structures co-integrated with SOI CMOS circuits: design and fabrication of NEMS-based lab-on-chip to characterize the electromechanical properties of materials at nanometer scale, nanowires gas sensors, nanoporous silicon membranes, magnetometers, flow, humidity, pressure and inertial sensors, surface acoustic wave device, etc.

Research infrastructure :

Winfab is equipped with a complete pilot fabrication line on silicon/SOI substrates of about 1,000 m² for the rapid prototyping and validation of new fabrication steps and of new integrated devices or microsystems.

Electrical measurement set-ups available in WELCOME cover a large range of frequencies (from DC up to 110 GHz) and temperatures (from few mK up to 400°C) on wafer-scale as well as packaged circuits levels. Physical (e.g. interface or thin layer properties) and mechanical (adhesion, stress...) characterization are widely available in the CeRMiN environment.

Simulation tools include industry-standard softwares for integrated processes and devices. Device irradiation is available at the nearby cyclotron research centre on a bench qualified by ESA. The wide research results have been honoured by more than 50 invited presentations in international and national conferences, as well as by several awards.

Most recent publications

Below are listed the 10 most recent journal articles and conference papers produced in this research area. You also can access all publications by following this link : see all publications.


Journal Articles


1. P. Teixeira, Jennifer; Flandre, Denis; Çaha, Ihsan; Lontchi Jioleo, Jackson; M. P. Salomé, Pedro; A. Fernandes, Paulo; J. N. Oliveira, António; Chen, Wei-Chao; Edoff, Marika; Oliveira, Kevin; Deepak Francis, Leonard. SiOx Patterned Based Substrates Implemented in Cu(In,Ga)Se2 Ultrathin Solar Cells: Optimum Thickness. In: IEEE JOURNAL OF PHOTOVOLTAICS, , p. 8 (2022). (Accepté/Sous presse). http://hdl.handle.net/2078.1/260533

2. Kilchytska, Valeriya; André, Nicolas; Francis, Laurent; Tounsi, Fares; Flandre, Denis; Amor, Sedki; Machhout, M. Characteristics of noise degradation and recovery in gamma-irradiated SOI nMOSFET with in-situ thermal annealing. In: Solid-State Electronics, Vol. Journal pre proof, p. 20 (2022). doi:10.1016/j.sse.2022.108300 (Accepté/Sous presse). http://hdl.handle.net/2078.1/260042

3. Yan, Yiyi; Kilchytska, Valeriya; Bin, Wang; Faniel, Sébastien; Zeng, Yun; Raskin, Jean-Pierre; Flandre, Denis. Characterization of thin Al2O3/SiO2 dielectric stack for CMOS transistors. In: Microelectronic Engineering, Vol. 254, no.111708, p. 7 (2022). doi:10.1016/j.mee.2022.111708. http://hdl.handle.net/2078.1/259850

4. Majid Niaz Akhtar; Huynen, Isabelle; Jiajun Liu; Mustafa Z. Mahmoud; Li Feng. Electromagnetic performance, Optical and Physiochemical Features of CaTiO3/ NiO and SrFe12O19/NiO Nanocomposites Based Bilayer Absorber. In: Journal of Colloid and Interface Science, p. 879-892 (2021). doi:10.1016/j.jcis.2021.11.127. http://hdl.handle.net/2078.1/254230

5. Vercauteren, Roselien; Francis, Laurent; Scheen, Gilles; Raskin, Jean-Pierre. Porous silicon membranes and their applications: Recent advances. In: Sensors and Actuators A: Physical, Vol. 318, no. 112486, p. 20 (2021). doi:10.1016/j.sna.2020.112486. http://hdl.handle.net/2078.1/256987

6. Melinte, Sorin; Shang, Qingqing; Tang, Fen; Yang, Songlin; Ye, Ran; Wang, Ting; Zuo, Chao. Generation of Photonic Hooks from Patchy Microcylinders. In: Photonics, Vol. 8, p. 466 (2021). doi:10.3390/photonics8110466. http://hdl.handle.net/2078.1/254102

7. Melinte, Sorin; Shang, Qingqing; Tang, Fen; Yang, Songlin; Oubaha, Hamid; Caina Aysabucha, Darwin Rodolfo; Wang, Zengbo; Zuo, Chao; Yu, Lingya; Ye, Ran. Super-Resolution Imaging with Patchy Microspheres. In: Photonics, Vol. 8, p. 513 (2021). doi:10.3390/photonics8110513. http://hdl.handle.net/2078.1/254099

8. Dalila Bousba; Huynen, Isabelle; Danlée, Yann; Lakhdar Sidi Salah; Nassira Ouslimani; Hammouche Aksas. Carbon nanotubes (CNTs) from synthesis to functionalized (CNTs) using conventional and new chemical approaches. In: Journal of Nanomaterials, Vol. Article ID 4972770, p. 31 p. (2021). doi:10.1155/2021/4972770. http://hdl.handle.net/2078.1/251033

9. Flandre, Denis; Galy, Philippe; Amor, Sedki; Kilchytska, Valeriya. Trap Recovery by in-Situ Annealing in Fully-Depleted MOSFET With Active Silicide Resistor. In: IEEE Electron Device Letters, Vol. 42, no.7, p. 1085-1088 (2021). doi:10.1109/LED.2021.3079244. http://hdl.handle.net/2078.1/250630

10. Roisin, Nicolas; Brunin, Guillaume; Raskin, Jean-Pierre; Rignanese, Gian-Marco; Flandre, Denis. Indirect light absorption model for highly strained silicon infrared sensors. In: Journal of Applied Physics, Vol. 30, no.5, p. 30 (2021). doi:10.1063/5.0057350 (Accepté/Sous presse). http://hdl.handle.net/2078.1/249729


Conference Papers


1. Halder, Arka; Lederer, Dimitri; Kilchytska, Valeriya; Rack, Martin; Raskin, Jean-Pierre; Nyssens, Lucas. 22 nm FD-SOI MOSFET Figures of Merit at high temperatures upto 175 °C. In: SiRF 2022 Proceedings, IEEE, 2022, 978-1-6654-3469-0, p. 27-30 xxx. doi:10.1109/sirf53094.2022.9720052. http://hdl.handle.net/2078.1/262713

2. Danlée, Yann; Tang, Xiaohui; Francis, Laurent; Hermans, Sophie; Raskin, Jean-Pierre; Walewyns, Thomas; de Leuze, Oriane; Mahy, J.. Sub-ppm detection of H2S with CuO-loaded SnO2 hollow nanospheres deposited on interdigitated electrodes. 2022 xxx. http://hdl.handle.net/2078.1/260251

3. Nabet, Massinissa; Nyssens, Lucas; Rack, Martin; Lederer, Dimitri; Raskin, Jean-Pierre. Field-Effect Passivation of Lossy Interfaces in High-Resistivity RF Silicon Substrates. In: EuroSOI-ULIS 2021 Proceedings, IEEE, 2021, 9781665437462, p. 130-133 xxx. doi:10.1109/eurosoi-ulis53016.2021.9560697. http://hdl.handle.net/2078.1/262712

4. Nyssens, Lucas; Rack, Martin; Courte, Quentin; Lederer, Dimitri; Raskin, Jean-Pierre. Impact of Device Shunt Loss on DC-80 GHz SPDT in 22 nm FD-SOI. In: ESSDERC 2021 Proceedings, IEEE, 2021, 978-1-6654-3748-6, p. 195-198 xxx. doi:10.1109/ESSDERC53440.2021.9631835. http://hdl.handle.net/2078.1/262711

5. Jain, Sameer H.; Lederer, Dimitri; Kaltalioglu, Erdem; Prindle, Chris. Novel mmWave NMOS Device for High Pout mmWave Power Amplifiers in 45RFSOI. In: ESSDERC 2021 Proceedings, IEEE, 2021, 978-1-6654-3748-6, p. 199-202 xxx. doi:10.1109/ESSDERC53440.2021.9631775. http://hdl.handle.net/2078.1/262709

6. Halder, Arka; Nyssens, Lucas; Kilchytska, Valeriya; Rack, Martin; Raskin, Jean-Pierre; Vanbrabant, Martin. Back-Gate Network Extraction Free from Dynamic Self-Heating in FD SOI. 2021 xxx. http://hdl.handle.net/2078.1/259853

7. Halder, Arka; Nyssens, Lucas; Kilchytska, Valeriya; Makovejev, Sergei; Esfeh, Babak Kazemi; Raskin, Jean-Pierre; Flandre, Denis. Advanced MOSFETs Electrical Characterization for Further Analog and RF applications. 2021 xxx. http://hdl.handle.net/2078.1/259852

8. Roisin, Nicolas; André, Nicolas; Francis, Laurent; Delhaye, Thibault; Flandre, Denis. Improving MOSFET Piezoresistive Strain Gauges Limit of Detection Using Lock-In Principle. In: Proceedings of the IEEE Sensors 2021, 2021 xxx. http://hdl.handle.net/2078.1/259484

9. Francis, Laurent; Moumneh, Ramy; Le Brun, Grégoire; Hanus, Romain; Raskin, Jean-Pierre. Paper-based stacked reverse electrodialysis cells for energy generation from salinity gradient. 2021 xxx. http://hdl.handle.net/2078.1/256991

10. Li, Guoli; Flandre, Denis; He, Jiawei; Liao, Lei. Defect Engineering in n‐Type Oxide Semiconductor TFTs. 2021 xxx. http://hdl.handle.net/2078.1/251489