Ongoing research projects

IMMC

Ongoing research projects in iMMC (July 2021)


This a short description of research projects which are presently under progress in iMMC.
Hereunder, you may select one research direction or choose to apply another filter:

Biomedical engineering

Computational science

Civil and environmental engineering

Dynamical and electromechanical systems

Energy

Fluid mechanics

Processing and characterisation of materials

Chemical engineering

Solid mechanics


Research direction:
Listed keyword:
Other keyword:
Division:
Supervisor:

List of projects related to: plasticity




CeraMAX / Aerostream
Researcher: Matthieu Marteleur
Supervisor(s): Pascal Jacques

I am currently working on the processing and characterisation of a particular type of ceramics called MAX phases. They present an intermediate behavior between a ceramic and a metal at high temperature, providing a unique combination of functional properties.
My research projects also include Additive Manufacturing on metallic materials, particularly Al and Ti alloys. I am studying the relationship between the process parameters and the resulting microstructure and properties.




Researcher: Laurine Choisez
Supervisor(s): Pascal Jacques

The association of different plastic deformation modes (TRIP, TWIP) induces unmatched levels of mechanical properties in a new beta metastables titanium alloys family. A hardening beyond the theoretical limit is especially noticed, together with a uniform deformation 3 to 4 times higher than the one in a classic TA6V alloy and a yield stress superior of 30 percent to the one in a

TWIP alloy. A positive synergy is thought to exist between a high hardening and the damage resistance and toughness of such materials. My thesis will consist in the study of the damage resistance and the toughness of several beta metastables titanium alloys with different prevailing plastic deformation mechanisms in order to highlight the mechanism responsible of the post-necking deformation properties.



RESTEAR
Researcher: Thaneshan Sapanathan
Supervisor(s): Aude Simar

completed a mechanical engineering degree and a PhD at Monash University (Australia) in 2010 and 2014, respectively. His thesis was entitled “Fabrication of axi-symmetric hybrid materials using combination of shear and pressure”. During his PhD, he worked on architectured hybrid materials fabrication using severe plastic deformation (SPD) processes. Two novel axi-symmetric SPD techniques were investigated to fabricate hybrid materials with concurrent grain refinements. After that, he started a research project at University of Technology of Compiègne (France) in which he investigated the weldability window for similar and dissimilar material combinations using numerical simulations for magnetic pulse welding. He also studied the interfacial phenomena, behavior of material under high strain rate deformation, modeling and simulation of the magnetic pulse welding/forming. Then, I was working as a postdoctoral research fellow at UCL on the topic of characterizations of aluminium to steel welds made by friction stir welds and friction melt bonding. At present, I am working as a FNRS reserch officer (Chargé de recherche) and investigating intermetallic induced residual stresses and mitigation of hot tear in innovative dissimilar joints.



Friction stir processing based local damage mitigation and healing in aluminium alloys
Researcher: Matthieu Baudouin Lezaack
Supervisor(s): Aude Simar

Al 7XXX alloys will be characterized before and after friction stir process (FSP) in order to identify the damage mechanisms. The performances of FSPed alloys will be studied by macromechanical testing. Up to now, a 150% increase in ductility was reached by FSP + heat treatments compared to the base 7475 Al material. Then a numerical model will catch the 7XXX aluminium behavior in a close future.